The topology of Liouville foliation for the Sokolov integrable case on the Lie algebra so(4)
Sbornik. Mathematics, Tome 200 (2009) no. 6, pp. 899-921

Voir la notice de l'article provenant de la source Math-Net.Ru

Several new integrable cases for Euler's equations on some six-dimensional Lie algebras were found by Sokolov in 2004. In this paper we study topological properties of one of these integrable cases on the Lie algebra so(4). In particular, for the system under consideration the bifurcation diagrams of the momentum mapping are constructed and all Fomenko invariants are calculated. Thereby, the classification of isoenergy surfaces for this system up to the rough Liouville equivalence is obtained. Bibliography: 9 titles.
Keywords: integrable Hamiltonian systems, momentum mapping, bifurcation diagram, topological invariants.
@article{SM_2009_200_6_a4,
     author = {G. Haghighatdoost and A. A. Oshemkov},
     title = {The topology of {Liouville} foliation for the {Sokolov} integrable case on the {Lie} algebra so(4)},
     journal = {Sbornik. Mathematics},
     pages = {899--921},
     publisher = {mathdoc},
     volume = {200},
     number = {6},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_6_a4/}
}
TY  - JOUR
AU  - G. Haghighatdoost
AU  - A. A. Oshemkov
TI  - The topology of Liouville foliation for the Sokolov integrable case on the Lie algebra so(4)
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 899
EP  - 921
VL  - 200
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_6_a4/
LA  - en
ID  - SM_2009_200_6_a4
ER  - 
%0 Journal Article
%A G. Haghighatdoost
%A A. A. Oshemkov
%T The topology of Liouville foliation for the Sokolov integrable case on the Lie algebra so(4)
%J Sbornik. Mathematics
%D 2009
%P 899-921
%V 200
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2009_200_6_a4/
%G en
%F SM_2009_200_6_a4
G. Haghighatdoost; A. A. Oshemkov. The topology of Liouville foliation for the Sokolov integrable case on the Lie algebra so(4). Sbornik. Mathematics, Tome 200 (2009) no. 6, pp. 899-921. http://geodesic.mathdoc.fr/item/SM_2009_200_6_a4/