@article{SM_2009_200_6_a4,
author = {G. Haghighatdoost and A. A. Oshemkov},
title = {The topology of {Liouville} foliation for the {Sokolov} integrable case on the {Lie} algebra so(4)},
journal = {Sbornik. Mathematics},
pages = {899--921},
year = {2009},
volume = {200},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2009_200_6_a4/}
}
TY - JOUR AU - G. Haghighatdoost AU - A. A. Oshemkov TI - The topology of Liouville foliation for the Sokolov integrable case on the Lie algebra so(4) JO - Sbornik. Mathematics PY - 2009 SP - 899 EP - 921 VL - 200 IS - 6 UR - http://geodesic.mathdoc.fr/item/SM_2009_200_6_a4/ LA - en ID - SM_2009_200_6_a4 ER -
G. Haghighatdoost; A. A. Oshemkov. The topology of Liouville foliation for the Sokolov integrable case on the Lie algebra so(4). Sbornik. Mathematics, Tome 200 (2009) no. 6, pp. 899-921. http://geodesic.mathdoc.fr/item/SM_2009_200_6_a4/
[1] V. V. Sokolov, “One class of quadratic $\mathrm{so}(4)$ Hamiltonians”, Dokl. Math., 69:1 (2004), 108–111 | MR | Zbl
[2] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall, CRC, Boca Raton, FL, 2004 | MR | MR | Zbl | Zbl
[3] A. A. Oshemkov, “Fomenko invariants for the main integrable cases of the rigid body motion equations”, Topological classification of integrable systems, Adv. Soviet Math., 6, Amer. Math. Soc., Providence, RI, 1991, 67–146 | MR | Zbl | Zbl
[4] G. Khagigatdust, “Bifurcation diagram of a class of Hamiltonians on algebra $\mathrm{so}(4)$”, 60, no. 6, 2005, 1–8 | MR | Zbl
[5] Gh. Haghighatdoost, “The topology of isoenergetic surfaces for the Sokolov integrable case in the Lie algebra $\mathrm{so}(4)$”, Dokl. Math., 71:2 (2005), 256–259 | MR
[6] V. V. Trofimov, A. T. Fomenko, Algebra i geometriya integriruemykh gamiltonovykh differentsialnykh uravnenii, Faktorial, M.; Prosperus, Izhevsk, 1995 | MR | Zbl
[7] A. V. Borisov, I. S. Mamaev, Dinamika tverdogo tela. Gamiltonovy metody, integriruemost, khaos, In-t komp. issledovanii, M.–Izhevsk, 2005 | MR | Zbl
[8] A. T. Fomenko, Kh. Tsishang, “A topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom”, Math. USSR-Izv., 36:3 (1991), 567–596 | DOI | MR | Zbl | Zbl
[9] A. T. Fomenko, “The topology of surfaces of constant energy in integrable Hamiltonian systems, and obstructions to integrability”, Math. USSR-Izv., 29:3 (1987), 629–658 | DOI | MR | Zbl | Zbl