The topology of Liouville foliation for the Sokolov integrable case on the Lie algebra so(4)
Sbornik. Mathematics, Tome 200 (2009) no. 6, pp. 899-921 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Several new integrable cases for Euler's equations on some six-dimensional Lie algebras were found by Sokolov in 2004. In this paper we study topological properties of one of these integrable cases on the Lie algebra so(4). In particular, for the system under consideration the bifurcation diagrams of the momentum mapping are constructed and all Fomenko invariants are calculated. Thereby, the classification of isoenergy surfaces for this system up to the rough Liouville equivalence is obtained. Bibliography: 9 titles.
Keywords: integrable Hamiltonian systems, momentum mapping, bifurcation diagram, topological invariants.
@article{SM_2009_200_6_a4,
     author = {G. Haghighatdoost and A. A. Oshemkov},
     title = {The topology of {Liouville} foliation for the {Sokolov} integrable case on the {Lie} algebra so(4)},
     journal = {Sbornik. Mathematics},
     pages = {899--921},
     year = {2009},
     volume = {200},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_6_a4/}
}
TY  - JOUR
AU  - G. Haghighatdoost
AU  - A. A. Oshemkov
TI  - The topology of Liouville foliation for the Sokolov integrable case on the Lie algebra so(4)
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 899
EP  - 921
VL  - 200
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_6_a4/
LA  - en
ID  - SM_2009_200_6_a4
ER  - 
%0 Journal Article
%A G. Haghighatdoost
%A A. A. Oshemkov
%T The topology of Liouville foliation for the Sokolov integrable case on the Lie algebra so(4)
%J Sbornik. Mathematics
%D 2009
%P 899-921
%V 200
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2009_200_6_a4/
%G en
%F SM_2009_200_6_a4
G. Haghighatdoost; A. A. Oshemkov. The topology of Liouville foliation for the Sokolov integrable case on the Lie algebra so(4). Sbornik. Mathematics, Tome 200 (2009) no. 6, pp. 899-921. http://geodesic.mathdoc.fr/item/SM_2009_200_6_a4/

[1] V. V. Sokolov, “One class of quadratic $\mathrm{so}(4)$ Hamiltonians”, Dokl. Math., 69:1 (2004), 108–111 | MR | Zbl

[2] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall, CRC, Boca Raton, FL, 2004 | MR | MR | Zbl | Zbl

[3] A. A. Oshemkov, “Fomenko invariants for the main integrable cases of the rigid body motion equations”, Topological classification of integrable systems, Adv. Soviet Math., 6, Amer. Math. Soc., Providence, RI, 1991, 67–146 | MR | Zbl | Zbl

[4] G. Khagigatdust, “Bifurcation diagram of a class of Hamiltonians on algebra $\mathrm{so}(4)$”, 60, no. 6, 2005, 1–8 | MR | Zbl

[5] Gh. Haghighatdoost, “The topology of isoenergetic surfaces for the Sokolov integrable case in the Lie algebra $\mathrm{so}(4)$”, Dokl. Math., 71:2 (2005), 256–259 | MR

[6] V. V. Trofimov, A. T. Fomenko, Algebra i geometriya integriruemykh gamiltonovykh differentsialnykh uravnenii, Faktorial, M.; Prosperus, Izhevsk, 1995 | MR | Zbl

[7] A. V. Borisov, I. S. Mamaev, Dinamika tverdogo tela. Gamiltonovy metody, integriruemost, khaos, In-t komp. issledovanii, M.–Izhevsk, 2005 | MR | Zbl

[8] A. T. Fomenko, Kh. Tsishang, “A topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom”, Math. USSR-Izv., 36:3 (1991), 567–596 | DOI | MR | Zbl | Zbl

[9] A. T. Fomenko, “The topology of surfaces of constant energy in integrable Hamiltonian systems, and obstructions to integrability”, Math. USSR-Izv., 29:3 (1987), 629–658 | DOI | MR | Zbl | Zbl