The sharp constant in Markov's inequality for the Laguerre weight
Sbornik. Mathematics, Tome 200 (2009) no. 6, pp. 887-897

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the polynomial of degree $n$ that deviates least from zero in the uniformly weighted metric with Laguerre weight is the extremal polynomial in Markov's inequality for the norm of the $k$th derivative. Moreover, the corresponding sharp constant does not exceed $$ \frac{8^kn!\,k!}{(n-k)!\,(2k)!}. $$ For the derivative of a fixed order this bound is asymptotically sharp as $n\to\infty$. Bibliography: 20 items.
Keywords: Markov's inequality, weighted polynomial inequalities.
@article{SM_2009_200_6_a3,
     author = {V. P. Sklyarov},
     title = {The sharp constant in {Markov's} inequality for the {Laguerre} weight},
     journal = {Sbornik. Mathematics},
     pages = {887--897},
     publisher = {mathdoc},
     volume = {200},
     number = {6},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_6_a3/}
}
TY  - JOUR
AU  - V. P. Sklyarov
TI  - The sharp constant in Markov's inequality for the Laguerre weight
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 887
EP  - 897
VL  - 200
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_6_a3/
LA  - en
ID  - SM_2009_200_6_a3
ER  - 
%0 Journal Article
%A V. P. Sklyarov
%T The sharp constant in Markov's inequality for the Laguerre weight
%J Sbornik. Mathematics
%D 2009
%P 887-897
%V 200
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2009_200_6_a3/
%G en
%F SM_2009_200_6_a3
V. P. Sklyarov. The sharp constant in Markov's inequality for the Laguerre weight. Sbornik. Mathematics, Tome 200 (2009) no. 6, pp. 887-897. http://geodesic.mathdoc.fr/item/SM_2009_200_6_a3/