Mots-clés : Birkhoff-Trjitzinsky theorem.
@article{SM_2009_200_5_a6,
author = {D. N. Tulyakov},
title = {Difference equations having bases with powerlike growth which are perturbed by a~spectral parameter},
journal = {Sbornik. Mathematics},
pages = {753--781},
year = {2009},
volume = {200},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2009_200_5_a6/}
}
D. N. Tulyakov. Difference equations having bases with powerlike growth which are perturbed by a spectral parameter. Sbornik. Mathematics, Tome 200 (2009) no. 5, pp. 753-781. http://geodesic.mathdoc.fr/item/SM_2009_200_5_a6/
[1] H. Poincaré, “Sur les Equations Linéaires aux Différentielles Ordinaires et aux Différences Finies”, Amer. J. Math., 7:3 (1885), 203–258 | DOI | MR | Zbl
[2] O. Perron, “Über einen Satz des Herrn Poincaré”, J. Reine Angew. Math., 136 (1909), 17–37 | Zbl
[3] O. Perron, “Über die Poincarésche lineare Differenrengleichung”, J. Reine Angew. Math., 137 (1910), 6–64 | Zbl
[4] A. O. Gel'fond, Differenzenrechnung, VEB, Berlin, 1958 | MR | MR | Zbl | Zbl
[5] D. G. Birkhoff, “General theory of linear difference equations”, Trans. Amer. Math. Soc., 12:2 (1911), 243–284 | DOI | MR | Zbl
[6] D. G. Birkhoff, W. J. Trjitzinsky, “Analytic theory of singular difference equations”, Acta Math., 60:1 (1933), 1–89 | DOI | MR | Zbl
[7] D. G. Birkhoff, “Formal theory of irregular linear difference equations”, Acta Math., 54:1 (1930), 205–246 | DOI | MR | Zbl
[8] A. I. Aptekarev, “Asymptotics of orthogonal polynomials in a neighborhood of the endpoints of the interval of orthogonality”, Russian Acad. Sci. Sb. Math., 76:1 (1993), 35–50 | DOI | MR | Zbl | Zbl
[9] D. N. Tulyakov, “Local asymptotics of the ratio of orthogonal polynomials in the neighbourhood of an end-point of the support of the orthogonality measure”, Sb. Math., 192:2 (2001), 299–321 | DOI | MR | Zbl
[10] S. P. Suetin, “O silnoi asimptotike mnogochlenov, ortogonalnykh otnositelno kompleksnogo vesa”, Matem. sb., 200:1 (2009), 81–96
[11] V. A. Kaljagin, “On a class of polynomials defined by two orthogonality relations”, Math. USSR-Sb., 38:4 (1981), 563–580 | DOI | MR | Zbl
[12] V. N. Sorokin, “A generalization of classical orthogonal polynomials and the convergence of simultaneous Pade approximants”, J. Soviet Math., 45:6 (1989), 1461–1499 | DOI | MR | Zbl
[13] N. I. Akhiezer, The classical moment problem and some related questions in analysis, Hafner, New York; Oliver Boyd, Edinburgh–London, 1965 | MR | MR | Zbl | Zbl
[14] V. Kaliaguinea, A. Ronveaux, “On an system of “classical” polynomials of simultaneous orthogonality”, J. Comput. Appl. Math., 67:2 (1996), 207–217 | DOI | MR | Zbl