Mots-clés : algebraic algebras.
@article{SM_2009_200_5_a5,
author = {L. M. Samoilov},
title = {Algebraic algebras and prime varieties of associative algebras},
journal = {Sbornik. Mathematics},
pages = {723--751},
year = {2009},
volume = {200},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2009_200_5_a5/}
}
L. M. Samoilov. Algebraic algebras and prime varieties of associative algebras. Sbornik. Mathematics, Tome 200 (2009) no. 5, pp. 723-751. http://geodesic.mathdoc.fr/item/SM_2009_200_5_a5/
[1] A. Kemer, “PI-algebras and nil algebras of bounded index”, Trends in ring theory (Miscolc, Hungary, 1996), CMS Conf. Proc., 22, Amer. Math. Soc., Providence, RI, 1998, 59–69 | MR | Zbl
[2] A. R. Kemer, Ideals of identities of associative algebras, Transl. Math. Monogr., 87, Amer. Math. Soc., Providence, RI, 1991 | MR | Zbl
[3] I. Sviridova, “Varieties and algebraic algebras of bounded degree”, J. Pure Appl. Algebra, 133:1–2 (1998), 233–240 | DOI | MR | Zbl
[4] I. Yu. Sviridova, “T-pervichnye mnogoobraziya i algebraicheskie algebry”, Fundament. i prikl. matem., 8:1 (2002), 221–243 | MR | Zbl
[5] L. M. Samoilov, “On the nilindex of the radical of a relatively free associative algebra”, Math. Notes, 82:3–4 (2007), 522–530 | DOI | MR | Zbl
[6] L. M. Samoǐlov, “Radical of a relatively free associative algebra over fields of positive characteristic”, Sb. Math., 199:5 (2008), 707–753 | DOI | MR | Zbl
[7] L. M. Samoilov, “Analog teoremy Levitskogo dlya beskonechno porozhdennykh assotsiativnykh algebr”, Mat. zametki (to appear)
[8] A. R. Kemer, “Representability of reduced free algebras”, Algebra and Logic, 27:3 (1988), 167–184 | DOI | MR | Zbl
[9] A. R. Kemer, “Identities of finitely generated algebras over an infinite field”, Math. USSR-Izv., 37:1 (1991), 69–96 | DOI | MR | Zbl
[10] A. R. Kemer, “Finite basis property of identities of associative algebras”, Algebra and Logic, 26:5 (1987), 362–397 | DOI | MR | Zbl | Zbl