Mots-clés : barycentre map
@article{SM_2009_200_5_a4,
author = {V. Yu. Protasov and M. E. Shirokov},
title = {Generalized compactness in~linear spaces and its applications},
journal = {Sbornik. Mathematics},
pages = {697--722},
year = {2009},
volume = {200},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2009_200_5_a4/}
}
V. Yu. Protasov; M. E. Shirokov. Generalized compactness in linear spaces and its applications. Sbornik. Mathematics, Tome 200 (2009) no. 5, pp. 697-722. http://geodesic.mathdoc.fr/item/SM_2009_200_5_a4/
[1] R. R. Phelps, Lectures on Choquet's theorem, Van Nostrand, Princeton, NJ–Toronto, ON–London, 1966 | MR | Zbl | Zbl
[2] E. M. Alfsen, Compact convex sets and boundary integrals, Springer-Verlag, New York–Heidelberg, 1971 | MR | Zbl
[3] A. D. Ioffe, V. M. Tihomirov, Theory of extremal problems, Stud. Math. Appl., 6, North-Holland, Amsterdam–New York, 1979 | MR | MR | Zbl | Zbl
[4] G. A. Edgar, “Extremal integral representations”, J. Functional Analysis, 23:2 (1976), 145–161 | DOI | MR | Zbl
[5] G. A. Edgar, “On the Radon–Nikodym-property and martingale convergence”, Vector space measures and applications. II (Univ. Dublin, Dublin, 1977), Lecture Notes in Math., 645, Springer-Verlag, Berlin–Heidelberg, 1978, 62–76 | DOI | MR | Zbl
[6] R. D. Bourgin, “Geometric aspects of convex sets with the Radon–Nikodým property”, Lecture Notes in Math., 993, Springer-Verlag, Berlin–Heidelberg, 1983 | DOI | MR | Zbl
[7] R. D. Bourgin, G. A. Edgar, “Noncompact simplexes in Banach spaces with the Radon–Nikodým property”, J. Functional Analysis, 23:2 (1976), 162–176 | DOI | MR | Zbl
[8] P. A. Meyer, Probability and potentials, Blaisdell, Waltham, MA–Toronto, ON–London, 1966 | MR | Zbl | Zbl
[9] M. E. Shirokov, “On the strong CE-property of convex sets”, Math. Notes, 82:3–4 (2007), 395–409 | DOI | MR | Zbl
[10] J. Vesterstrøm, “On open maps, compact convex sets, and operator algebras”, J. London Math. Soc. (2), 6 (1973), 289–297 | DOI | MR | Zbl
[11] Ȧ. Lima, “On continuous convex functions and split faces”, Proc. London Math. Soc. (3), 25 (1972), 27–40 | DOI | MR | Zbl
[12] R. C. O'Brien, “On the openness of the barycentre map”, Math. Ann., 223:3 (1976), 207–212 | DOI | MR | Zbl
[13] S. Papadopoulou, “On the geometry of stable compact convex sets”, Math. Ann., 229:3 (1977), 193–200 | DOI | MR | Zbl
[14] A. Clausing, S. Papadopoulou, “Stable convex sets and extremal operators”, Math. Ann., 231:3 (1978), 193–203 | DOI | MR | Zbl
[15] R. Grzaślewicz, “Extreme continuous function property”, Acta Math. Hungar., 74:1–2 (1997), 93–99 | DOI | MR | Zbl
[16] E. S. Polovinkin, M. V. Balashov, Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2004 | Zbl
[17] V. I. Bogachev, Osnovy teorii mery, RKhD, Moskva–Izhevsk, 2003
[18] K. R. Parthasarathy, Probability measures on metric spaces, Academic Press, New York–London, 1967 | MR | Zbl
[19] N. N. Vakhaniya, V. I. Tarieladze, “Covariance operators of probability measures in locally convex spaces”, Theory Probab. Appl., 23:1 (1978), 1–21 | DOI | MR | Zbl | Zbl
[20] M. E. Shirokov, “Characterization of convex $\mu$-compact sets”, Russian Math. Surveys, 63:5 (2008), 981–982 | DOI | Zbl
[21] M. E. Shirokov, A. S. Holevo, “On approximation of infinite-dimensional quantum channels”, Probl. Inf. Transm., 44:2 (2008), 73–90 | DOI | MR
[22] A. S. Holevo, M. E. Shirokov, “Continuous ensembles and the capacity of infinite-dimensional quantum channels”, Theory Probab. Appl., 50:1 (2006), 86–98 | DOI | MR | Zbl
[23] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 ; I. C. Gohberg, M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monogr., 18, Amer. Math. Soc., Providence, RI, 1969 | MR | MR | Zbl
[24] L. Q. Eifler, “Open mapping theorems for probability measures on metric spaces”, Pacific J. Math., 66:1 (1976), 89–97 | MR | Zbl
[25] A. S. Kholevo, Vvedenie v kvantovuyu teoriyu informatsii, MTsNMO, M., 2002
[26] M. E. Shirokov, “The Holevo capacity of infinite dimensional channels and the additivity problem”, Comm. Math. Phys., 262:1 (2006), 137–159 | DOI | MR | Zbl
[27] A. S. Kholevo, M. E. Shirokov, R. F. Werner, “On the notion of entanglement in Hilbert spaces”, Russian Math. Surveys, 60:2 (2005), 359–360 | DOI | MR | Zbl
[28] G. Vidal, “Entanglement monotones”, J. Modern Opt., 47:2–3 (2000), 355–376 | MR
[29] M. B. Plenio, Sh. Virmani, “An introduction to entanglement measures”, Quantum Inf. Comput., 7:1–2 (2007), 1–51 ; arXiv: quant-ph/0504163 | MR | Zbl
[30] T. J. Osborne, “Convex hulls of varieties and entanglement measures based on the roof construction”, Quantum Inf. Comput., 7:3 (2007), 209–227 | MR | Zbl
[31] P. Rungta, C. M. Caves, “Concurrence-based entanglement measures for isotropic states”, 012307, Phys. Rev. A, 67:1 (2003) | DOI
[32] S. Boyd, L. Vandenberghe, Convex optimization, Cambridge Univ. Press, Cambridge, 2004 | MR | Zbl