Generalized compactness in linear spaces and its applications
Sbornik. Mathematics, Tome 200 (2009) no. 5, pp. 697-722 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a fixed convex domain in a linear metric space the problems of the continuity of convex envelopes (hulls) of continuous concave functions (the CE-property) and of convex envelopes (hulls) of arbitrary continuous functions (the strong CE-property) arise naturally. In the case of compact domains a comprehensive solution was elaborated in the 1970s by Vesterstrom and O'Brien. First Vesterstrom showed that for compact sets the strong CE-property is equivalent to the openness of the barycentre map, while the CE-property is equivalent to the openness of the restriction of this map to the set of maximal measures. Then O'Brien proved that in fact both properties are equivalent to a geometrically obvious ‘stability property’ of convex compact sets. This yields, in particular, the equivalence of the CE-property to the strong CE-property for convex compact sets. In this paper we give a solution to the following problem: can these results be extended to noncompact convex sets, and, if the answer is positive, to which sets? We show that such an extension does exist. This is an extension to the class of so-called $\mu$-compact sets. Moreover, certain arguments confirm that this could be the maximal class to which such extensions are possible. Then properties of $\mu$-compact sets are analysed in detail, several examples are considered, and applications of the results obtained to quantum information theory are discussed. Bibliography: 32 titles.
Keywords: $\mu$-compact set, convex hull of a function, stability of a convex set.
Mots-clés : barycentre map
@article{SM_2009_200_5_a4,
     author = {V. Yu. Protasov and M. E. Shirokov},
     title = {Generalized compactness in~linear spaces and its applications},
     journal = {Sbornik. Mathematics},
     pages = {697--722},
     year = {2009},
     volume = {200},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_5_a4/}
}
TY  - JOUR
AU  - V. Yu. Protasov
AU  - M. E. Shirokov
TI  - Generalized compactness in linear spaces and its applications
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 697
EP  - 722
VL  - 200
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_5_a4/
LA  - en
ID  - SM_2009_200_5_a4
ER  - 
%0 Journal Article
%A V. Yu. Protasov
%A M. E. Shirokov
%T Generalized compactness in linear spaces and its applications
%J Sbornik. Mathematics
%D 2009
%P 697-722
%V 200
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2009_200_5_a4/
%G en
%F SM_2009_200_5_a4
V. Yu. Protasov; M. E. Shirokov. Generalized compactness in linear spaces and its applications. Sbornik. Mathematics, Tome 200 (2009) no. 5, pp. 697-722. http://geodesic.mathdoc.fr/item/SM_2009_200_5_a4/

[1] R. R. Phelps, Lectures on Choquet's theorem, Van Nostrand, Princeton, NJ–Toronto, ON–London, 1966 | MR | Zbl | Zbl

[2] E. M. Alfsen, Compact convex sets and boundary integrals, Springer-Verlag, New York–Heidelberg, 1971 | MR | Zbl

[3] A. D. Ioffe, V. M. Tihomirov, Theory of extremal problems, Stud. Math. Appl., 6, North-Holland, Amsterdam–New York, 1979 | MR | MR | Zbl | Zbl

[4] G. A. Edgar, “Extremal integral representations”, J. Functional Analysis, 23:2 (1976), 145–161 | DOI | MR | Zbl

[5] G. A. Edgar, “On the Radon–Nikodym-property and martingale convergence”, Vector space measures and applications. II (Univ. Dublin, Dublin, 1977), Lecture Notes in Math., 645, Springer-Verlag, Berlin–Heidelberg, 1978, 62–76 | DOI | MR | Zbl

[6] R. D. Bourgin, “Geometric aspects of convex sets with the Radon–Nikodým property”, Lecture Notes in Math., 993, Springer-Verlag, Berlin–Heidelberg, 1983 | DOI | MR | Zbl

[7] R. D. Bourgin, G. A. Edgar, “Noncompact simplexes in Banach spaces with the Radon–Nikodým property”, J. Functional Analysis, 23:2 (1976), 162–176 | DOI | MR | Zbl

[8] P. A. Meyer, Probability and potentials, Blaisdell, Waltham, MA–Toronto, ON–London, 1966 | MR | Zbl | Zbl

[9] M. E. Shirokov, “On the strong CE-property of convex sets”, Math. Notes, 82:3–4 (2007), 395–409 | DOI | MR | Zbl

[10] J. Vesterstrøm, “On open maps, compact convex sets, and operator algebras”, J. London Math. Soc. (2), 6 (1973), 289–297 | DOI | MR | Zbl

[11] Ȧ. Lima, “On continuous convex functions and split faces”, Proc. London Math. Soc. (3), 25 (1972), 27–40 | DOI | MR | Zbl

[12] R. C. O'Brien, “On the openness of the barycentre map”, Math. Ann., 223:3 (1976), 207–212 | DOI | MR | Zbl

[13] S. Papadopoulou, “On the geometry of stable compact convex sets”, Math. Ann., 229:3 (1977), 193–200 | DOI | MR | Zbl

[14] A. Clausing, S. Papadopoulou, “Stable convex sets and extremal operators”, Math. Ann., 231:3 (1978), 193–203 | DOI | MR | Zbl

[15] R. Grzaślewicz, “Extreme continuous function property”, Acta Math. Hungar., 74:1–2 (1997), 93–99 | DOI | MR | Zbl

[16] E. S. Polovinkin, M. V. Balashov, Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2004 | Zbl

[17] V. I. Bogachev, Osnovy teorii mery, RKhD, Moskva–Izhevsk, 2003

[18] K. R. Parthasarathy, Probability measures on metric spaces, Academic Press, New York–London, 1967 | MR | Zbl

[19] N. N. Vakhaniya, V. I. Tarieladze, “Covariance operators of probability measures in locally convex spaces”, Theory Probab. Appl., 23:1 (1978), 1–21 | DOI | MR | Zbl | Zbl

[20] M. E. Shirokov, “Characterization of convex $\mu$-compact sets”, Russian Math. Surveys, 63:5 (2008), 981–982 | DOI | Zbl

[21] M. E. Shirokov, A. S. Holevo, “On approximation of infinite-dimensional quantum channels”, Probl. Inf. Transm., 44:2 (2008), 73–90 | DOI | MR

[22] A. S. Holevo, M. E. Shirokov, “Continuous ensembles and the capacity of infinite-dimensional quantum channels”, Theory Probab. Appl., 50:1 (2006), 86–98 | DOI | MR | Zbl

[23] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 ; I. C. Gohberg, M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monogr., 18, Amer. Math. Soc., Providence, RI, 1969 | MR | MR | Zbl

[24] L. Q. Eifler, “Open mapping theorems for probability measures on metric spaces”, Pacific J. Math., 66:1 (1976), 89–97 | MR | Zbl

[25] A. S. Kholevo, Vvedenie v kvantovuyu teoriyu informatsii, MTsNMO, M., 2002

[26] M. E. Shirokov, “The Holevo capacity of infinite dimensional channels and the additivity problem”, Comm. Math. Phys., 262:1 (2006), 137–159 | DOI | MR | Zbl

[27] A. S. Kholevo, M. E. Shirokov, R. F. Werner, “On the notion of entanglement in Hilbert spaces”, Russian Math. Surveys, 60:2 (2005), 359–360 | DOI | MR | Zbl

[28] G. Vidal, “Entanglement monotones”, J. Modern Opt., 47:2–3 (2000), 355–376 | MR

[29] M. B. Plenio, Sh. Virmani, “An introduction to entanglement measures”, Quantum Inf. Comput., 7:1–2 (2007), 1–51 ; arXiv: quant-ph/0504163 | MR | Zbl

[30] T. J. Osborne, “Convex hulls of varieties and entanglement measures based on the roof construction”, Quantum Inf. Comput., 7:3 (2007), 209–227 | MR | Zbl

[31] P. Rungta, C. M. Caves, “Concurrence-based entanglement measures for isotropic states”, 012307, Phys. Rev. A, 67:1 (2003) | DOI

[32] S. Boyd, L. Vandenberghe, Convex optimization, Cambridge Univ. Press, Cambridge, 2004 | MR | Zbl