Martingale ergodic and ergodic martingale processes with continuous time
Sbornik. Mathematics, Tome 200 (2009) no. 5, pp. 683-696 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In a paper dedicated to unifying martingales and ergodic averages, Kachurovskiǐ introduced certain unifying discrete-time martingale ergodic and ergodic martingale processes, for which he proved convergence theorems and established maximal and dominant inequalities. Our purpose in this article is to obtain similar results for such processes with continuous time. In addition, the results are used to assert convergence of yet another unifying process relating to Rota's approach to unification of martingales and Abel ergodic averages. Bibliography: 13 titles.
Keywords: ergodic averages, regular martingale, positive $\mathrm{L_1}{-}\mathrm{L_\infty}$-contraction.
@article{SM_2009_200_5_a3,
     author = {I. V. Podvigin},
     title = {Martingale ergodic and ergodic martingale processes with continuous time},
     journal = {Sbornik. Mathematics},
     pages = {683--696},
     year = {2009},
     volume = {200},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_5_a3/}
}
TY  - JOUR
AU  - I. V. Podvigin
TI  - Martingale ergodic and ergodic martingale processes with continuous time
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 683
EP  - 696
VL  - 200
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_5_a3/
LA  - en
ID  - SM_2009_200_5_a3
ER  - 
%0 Journal Article
%A I. V. Podvigin
%T Martingale ergodic and ergodic martingale processes with continuous time
%J Sbornik. Mathematics
%D 2009
%P 683-696
%V 200
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2009_200_5_a3/
%G en
%F SM_2009_200_5_a3
I. V. Podvigin. Martingale ergodic and ergodic martingale processes with continuous time. Sbornik. Mathematics, Tome 200 (2009) no. 5, pp. 683-696. http://geodesic.mathdoc.fr/item/SM_2009_200_5_a3/

[1] Sh. Kakutani, “Ergodic theory”, Proceedings of the International Congress of Mathematicians, vol. 2 (Cambridge, MA, 1950), Amer. Math. Soc., Providence, RI, 1952, 128–142 | MR | Zbl

[2] A. G. Kachurovskii, “General theories unifying ergodic averages and martingales”, Proc. Steklov Inst. Math., 256:1 (2007), 160–187 | DOI | MR | Zbl

[3] J. L. Doob, Stochastic processes, Wiley, New York; Chapman Hall, London, 1953 | MR | Zbl

[4] N. Dunford, J. T. Schwartz, “Convergence almost everywhere of operator averages”, J. Ration. Mech. Anal., 5:1 (1956), 129–178 | MR | Zbl

[5] J. Neveu, Discrete-parameter martingales, North-Holland, Amsterdam–Oxford; Elsevier, New York, 1975 | MR | Zbl

[6] U. Krengel, Ergodic theorems, de Gruyter Stud. Math., 6, de Gruyter, Berlin–New York, 1985 | MR | Zbl

[7] A. N. Shiryaev, Probability, Grad. Texts in Math., 95, Springer-Verlag, New York, 1996 | MR | MR | Zbl | Zbl

[8] G.-C. Rota, “Une théorie unifiée des martingales et des moyennes ergodiques”, C. R. Math. Acad. Sci. Paris, 252:14 (1961), 2064–2066 | MR | Zbl

[9] M. M. Rao, “Abstract martingales and ergodic theory”, Multivariate analysis III, Proc. Third Internat. Sympos. (Wright State Univ., Dayton, OH, 1972), Academic Press, New York, 1973, 45–60 | MR | Zbl

[10] M. M. Rao, Foundations of stochastic analysis, Academic Press, New York–London, 1981 | MR | Zbl

[11] G.-C. Rota, “Reynolds operators”, Proc. Sympos. Appl. Math., 16 (1964), 70–83 | MR | Zbl

[12] D. V. Widder, The Laplace transform, Princeton Math. Ser., 6, Princeton Univ. Press, Princeton, NJ, 1941 | MR | Zbl

[13] E. Hille, R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ., 31, Amer. Math. Soc., Providence, RI, 1957 | MR | MR | Zbl