Martingale ergodic and ergodic martingale processes with continuous time
Sbornik. Mathematics, Tome 200 (2009) no. 5, pp. 683-696

Voir la notice de l'article provenant de la source Math-Net.Ru

In a paper dedicated to unifying martingales and ergodic averages, Kachurovskiǐ introduced certain unifying discrete-time martingale ergodic and ergodic martingale processes, for which he proved convergence theorems and established maximal and dominant inequalities. Our purpose in this article is to obtain similar results for such processes with continuous time. In addition, the results are used to assert convergence of yet another unifying process relating to Rota's approach to unification of martingales and Abel ergodic averages. Bibliography: 13 titles.
Keywords: ergodic averages, regular martingale, positive $\mathrm{L_1}{-}\mathrm{L_\infty}$-contraction.
@article{SM_2009_200_5_a3,
     author = {I. V. Podvigin},
     title = {Martingale ergodic and ergodic martingale processes with continuous time},
     journal = {Sbornik. Mathematics},
     pages = {683--696},
     publisher = {mathdoc},
     volume = {200},
     number = {5},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_5_a3/}
}
TY  - JOUR
AU  - I. V. Podvigin
TI  - Martingale ergodic and ergodic martingale processes with continuous time
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 683
EP  - 696
VL  - 200
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_5_a3/
LA  - en
ID  - SM_2009_200_5_a3
ER  - 
%0 Journal Article
%A I. V. Podvigin
%T Martingale ergodic and ergodic martingale processes with continuous time
%J Sbornik. Mathematics
%D 2009
%P 683-696
%V 200
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2009_200_5_a3/
%G en
%F SM_2009_200_5_a3
I. V. Podvigin. Martingale ergodic and ergodic martingale processes with continuous time. Sbornik. Mathematics, Tome 200 (2009) no. 5, pp. 683-696. http://geodesic.mathdoc.fr/item/SM_2009_200_5_a3/