Optimal recovery of the solution of the heat equation from inaccurate data
Sbornik. Mathematics, Tome 200 (2009) no. 5, pp. 665-682 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of optimal recovery of the solution of the heat equation in the entire space at a fixed instant of time from inaccurate observations of this solution at some other instants of time is investigated. Explicit expressions for an optimal recovery method and its error are given. The solution of a similar problem with a priori information about the temperature distribution at some instants of time is also given. In all cases the optimal method uses information about at most two observations. Bibliography: 22 titles.
Keywords: optimal recovery, convex problem
Mots-clés : Fourier transform.
@article{SM_2009_200_5_a2,
     author = {G. G. Magaril-Il'yaev and K. Yu. Osipenko},
     title = {Optimal recovery of the solution of the heat equation from inaccurate data},
     journal = {Sbornik. Mathematics},
     pages = {665--682},
     year = {2009},
     volume = {200},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_5_a2/}
}
TY  - JOUR
AU  - G. G. Magaril-Il'yaev
AU  - K. Yu. Osipenko
TI  - Optimal recovery of the solution of the heat equation from inaccurate data
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 665
EP  - 682
VL  - 200
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_5_a2/
LA  - en
ID  - SM_2009_200_5_a2
ER  - 
%0 Journal Article
%A G. G. Magaril-Il'yaev
%A K. Yu. Osipenko
%T Optimal recovery of the solution of the heat equation from inaccurate data
%J Sbornik. Mathematics
%D 2009
%P 665-682
%V 200
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2009_200_5_a2/
%G en
%F SM_2009_200_5_a2
G. G. Magaril-Il'yaev; K. Yu. Osipenko. Optimal recovery of the solution of the heat equation from inaccurate data. Sbornik. Mathematics, Tome 200 (2009) no. 5, pp. 665-682. http://geodesic.mathdoc.fr/item/SM_2009_200_5_a2/

[1] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, 3-e izd., Nauka, M., 1972 ; A. N. Kolmogorov, S. V. Fomin, Introductory real analysis, Prentice-Hall, Englewood Cliffs, NJ, 1970 | MR | Zbl | MR | Zbl

[2] S. A. Smolyak, Ob optimalnom vosstanovlenii funktsii i funktsionalov ot nikh, Dis. ... kand. fiz.-matem. nauk, M., MGU, 1965

[3] A. G. Marchuk, K. Yu. Osipenko, “Best approximation of functions specified with an error at a finite number of points”, Math. Notes, 17:3 (1975), 207–212 | DOI | MR | Zbl | Zbl

[4] K. Yu. Osipenko, “Best approximation of analytic functions from information about their values at a finite number of points”, Math. Notes, 19:1 (1976), 17–23 | DOI | MR | Zbl

[5] Ch. A. Micchelli, Th. J. Rivlin, “A survey of optimal recovery”, Optimal estimation in approximation theory (Proc. Internat. Sympos., Freudenstadt, Germany, 1976), Plenum, New York–London, 1977, 1–54 | MR | Zbl

[6] G. G. Magaril-Il'yaev, T. L. Chan, “On the problem of optimal recovery of functionals their values at a finite number of points”, Russian Math. Surveys, 42:2 (1987), 289–290 | DOI | MR | Zbl

[7] V. V. Arestov, “Optimal recovery of operators, and related problems”, Proc. Steklov Inst. Math., 189 (1990), 1–20 | MR | MR | Zbl

[8] G. G. Magaril-Il'yaev, K. Yu. Osipenko, “Optimal recovery of functionals based on inaccurate data”, Math. Notes, 50:6 (1991), 1274–1279 | DOI | MR | Zbl | Zbl

[9] G. G. Magaril-Il'yaev, V. M. Tikhomirov, “Kolmogorov-type inequalities for derivatives”, Sb. Math., 188:12 (1997), 1799–1832 | DOI | MR | Zbl

[10] J. F. Traub, H. Woźniakowski, A general theory of optimal algorithms, Academic Press, New York–London, 1980 | MR | Zbl

[11] L. Plaskota, Noisy information and computational complexity, Cambridge Univ. Press, Cambridge, 1996 | MR | Zbl

[12] K. Yu. Osipenko, Optimal recovery of analytic functions, Nova Science Publ., Huntington–New York, 2000

[13] G. G. Magaril-Il'yaev, V. M. Tikhomirov, Convex analysis: theory and applications, Transl. Math. Monogr., 222, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl

[14] A. A. Melkman, Ch. A. Micchelli, “Optimal estimation of linear operators in Hilbert spaces from inaccurate data”, SIAM J. Numer. Anal., 16:1 (1979), 87–105 | DOI | MR | Zbl

[15] G. G. Magaril-Il'yaev, K. Yu. Osipenko, “Optimal recovery of functions and their derivatives from Fourier coefficients prescribed with an error”, Sb. Math., 193:3 (2002), 387–407 | DOI | MR | Zbl

[16] G. G. Magaril-Il'yaev, K. Yu. Osipenko, “Optimal recovery of functions and their derivatives from inaccurate information about the spectrum and inequalities for derivatives”, Funct. Anal. Appl., 37:3 (2003), 203–214 | DOI | MR | Zbl

[17] K. Yu. Osipenko, “The Hardy–Littlewood–Polya inequality for analytic functions in Hardy–Sobolev spaces”, Sb. Math., 197:3 (2006), 315–334 | DOI | MR | Zbl

[18] K. Yu. Osipenko, “O vosstanovlenii resheniya zadachi Dirikhle po netochnym iskhodnym dannym”, Vladikavkazskii mat. zhurn., 6:4 (2004), 55–62 | MR | Zbl

[19] G. G. Magaril-Il'yaev, K. Yu. Osipenko, V. M. Tikhomirov, “On optimal recovery of heat equation solutions”, Approximation theory: a volume dedicated to B. Bojanov, Drinov Academic Publ. House, Sofia, 2004, 163–175 | MR

[20] N. D. Vysk, K. Yu. Osipenko, “Optimal reconstruction of the solution of the wave equation from inaccurate initial data”, Math. Notes, 81:5–6 (2007), 723–733 | DOI | MR | Zbl

[21] K. Yu. Osipenko, “Optimal reconstruction of the solution of the Dirichlet problem from inaccurate input data”, Math. Notes, 82:3–4 (2007), 285–294 | DOI | MR | Zbl

[22] K. Yu. Osipenko, E. V. Wedenskaya, “Optimal recovery of solutions of the generalized heat equation in the unit ball from inaccurate data”, J. Complexity, 23:4–6 (2007), 653–661 | DOI | MR | Zbl