Completely integrable Hamiltonian systems on semidirect sums of Lie algebras
Sbornik. Mathematics, Tome 200 (2009) no. 5, pp. 629-659 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The complete integrability of Hamiltonian systems arising on Lie algebras which have the form of a direct sum is investigated. For algebras in these classes Sadetov's method takes a simpler form: the isomorphism between the algebra arising at the second step of Sadetov's approach and the stationary subalgebra of a generic element can be written out explicitly. The explicit form of this isomorphism is presented, as well as explicit formulae for polynomials in complete systems for the algebras $\operatorname{so}(n)+(\mathbb{R}^n)_k$, $\operatorname{su}(n)+(\mathbb{C}^n)_k$ and $\mathrm u(n)+(\mathbb{C}^n)_k$. For the algebras $\operatorname{so}(n)+\mathbb{R}^n$ the degrees of the resulting polynomial functions are analysed. Bibliography: 15 titles.
Keywords: Sadetov's method
Mots-clés : Poisson bracket, Liouville's theorem, Mishchenko-Fomenko conjecture.
@article{SM_2009_200_5_a0,
     author = {M. M. Zhdanova},
     title = {Completely integrable {Hamiltonian} systems on semidirect sums of {Lie} algebras},
     journal = {Sbornik. Mathematics},
     pages = {629--659},
     year = {2009},
     volume = {200},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_5_a0/}
}
TY  - JOUR
AU  - M. M. Zhdanova
TI  - Completely integrable Hamiltonian systems on semidirect sums of Lie algebras
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 629
EP  - 659
VL  - 200
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_5_a0/
LA  - en
ID  - SM_2009_200_5_a0
ER  - 
%0 Journal Article
%A M. M. Zhdanova
%T Completely integrable Hamiltonian systems on semidirect sums of Lie algebras
%J Sbornik. Mathematics
%D 2009
%P 629-659
%V 200
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2009_200_5_a0/
%G en
%F SM_2009_200_5_a0
M. M. Zhdanova. Completely integrable Hamiltonian systems on semidirect sums of Lie algebras. Sbornik. Mathematics, Tome 200 (2009) no. 5, pp. 629-659. http://geodesic.mathdoc.fr/item/SM_2009_200_5_a0/

[1] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall, CRC, Boca Raton, FL, 2004 | MR | MR | Zbl | Zbl

[2] V. V. Trofimov, A. T. Fomenko, Algebra i geometriya integriruemykh gamiltonovykh differentsialnykh uravnenii, Faktorial, M.; Prosperus, Izhevsk, 1995 | MR | Zbl

[3] A. S. Mishchenko, A. T. Fomenko, “On the integration of the Euler equations on semisimple Lie algebras”, Soviet Math. Dokl., 17:6 (1976), 1591–1593 | MR | Zbl

[4] A. S. Miščenko, A. T. Fomenko, “Euler equations on finite-dimensional Lie groups”, Math. USSR-Izv., 12:2 (1978), 371–389 | DOI | MR | Zbl | Zbl

[5] A. S. Mishchenko, A. T. Fomenko, “Integrability of Euler equations on semisimple Lie algebras”, Selecta Math. Soviet., 2:3 (1982), 207–291 | MR | MR | Zbl | Zbl

[6] V. V. Trofimov, A. T. Fomenko, “Dynamical systems on the orbits of linear representations of Lie groups and the complete integrability of certain hydrodynamical systems”, Funct. Anal. Appl., 17:1 (1983), 23–29 | DOI | MR | Zbl

[7] A. V. Brailov, A. T. Fomenko, “The topology of integral submanifolds of completely integrable Hamiltonian systems”, Math. USSR-Sb., 62:2 (1989), 373–383 | DOI | MR | Zbl | Zbl

[8] A. S. Mishchenko, A. T. Fomenko, “Generalized Liouville method of integration of Hamiltonian systems”, Funct. Anal. Appl., 12:2 (1978), 113–121 | DOI | MR | Zbl | Zbl

[9] A. S. Mischenko, A. T. Fomenko, “Nekommutativnoe integrirovanie gamiltonovykh sistem i ego prilozheniya”, Mekhanika tverdogo tela, 1978, no. 4, 187–188

[10] A. S. Mischenko, A. T. Fomenko, “Integrirovanie gamiltonovykh sistem s nekommutativnymi simmetriyami”, Tr. sem. po vektornomu i tenzornomu analizu, 20, Izd-vo Mosk. un-ta, M., 1981, 5–54 | MR | Zbl

[11] V. V. Trofimov, A. T. Fomenko, “Liouville integrability of Hamiltonian systems on Lie algebras”, Russian Math. Surveys, 39 (1984), 1–67 | DOI | MR | Zbl

[12] T. A. Pevtsova, “The symplectic structure of the orbits of the coadjoint representation of Lie algebras of type $E\times_\rho G$”, Math. USSR-Sb., 51 (1985), 275–286 | DOI | MR | Zbl | Zbl

[13] S. T. Sadetov, “A proof of the Mishchenko–Fomenko conjecture”, Dokl. Math., 70 (2004), 635–638 | MR

[14] A. V. Bolsinov, “Polnye involyutivnye nabory polinomov v puassonovykh algebrakh: dokazatelstvo gipotezy Mischenko–Fomenko”, Tr. sem. po vektornomu i tenzornomu analizu, 26, Izd-vo Mosk. un-ta, M., 2005, 87–109 | Zbl

[15] M. Raïs, “L'indice des produits semi-directs $E\times_\rho\mathfrak G$”, C. R. Acad. Sci. Paris Sér. A-B, 287:4 (1978), 195–197 | MR | Zbl