The solution of Arnold's problem on the weak asymptotics of Frobenius numbers with three arguments
Sbornik. Mathematics, Tome 200 (2009) no. 4, pp. 597-627

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that on the average the Frobenius numbers $f(a,b,c)$ behave like $\frac8\pi\sqrt{abc}$ . Bibliography: 28 titles.
Keywords: Frobenius numbers, continued fractions, Kloosterman sums.
@article{SM_2009_200_4_a6,
     author = {A. V. Ustinov},
     title = {The solution of {Arnold's} problem on the weak asymptotics of  {Frobenius} numbers with three arguments},
     journal = {Sbornik. Mathematics},
     pages = {597--627},
     publisher = {mathdoc},
     volume = {200},
     number = {4},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_4_a6/}
}
TY  - JOUR
AU  - A. V. Ustinov
TI  - The solution of Arnold's problem on the weak asymptotics of  Frobenius numbers with three arguments
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 597
EP  - 627
VL  - 200
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_4_a6/
LA  - en
ID  - SM_2009_200_4_a6
ER  - 
%0 Journal Article
%A A. V. Ustinov
%T The solution of Arnold's problem on the weak asymptotics of  Frobenius numbers with three arguments
%J Sbornik. Mathematics
%D 2009
%P 597-627
%V 200
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2009_200_4_a6/
%G en
%F SM_2009_200_4_a6
A. V. Ustinov. The solution of Arnold's problem on the weak asymptotics of  Frobenius numbers with three arguments. Sbornik. Mathematics, Tome 200 (2009) no. 4, pp. 597-627. http://geodesic.mathdoc.fr/item/SM_2009_200_4_a6/