The solution of Arnold's problem on the weak asymptotics of  Frobenius numbers with three arguments
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 200 (2009) no. 4, pp. 597-627
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is shown that on the average the Frobenius numbers $f(a,b,c)$ behave like $\frac8\pi\sqrt{abc}$ .
Bibliography: 28 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Frobenius numbers, continued fractions, Kloosterman sums.
                    
                    
                    
                  
                
                
                @article{SM_2009_200_4_a6,
     author = {A. V. Ustinov},
     title = {The solution of {Arnold's} problem on the weak asymptotics of  {Frobenius} numbers with three arguments},
     journal = {Sbornik. Mathematics},
     pages = {597--627},
     publisher = {mathdoc},
     volume = {200},
     number = {4},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_4_a6/}
}
                      
                      
                    TY - JOUR AU - A. V. Ustinov TI - The solution of Arnold's problem on the weak asymptotics of Frobenius numbers with three arguments JO - Sbornik. Mathematics PY - 2009 SP - 597 EP - 627 VL - 200 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2009_200_4_a6/ LA - en ID - SM_2009_200_4_a6 ER -
A. V. Ustinov. The solution of Arnold's problem on the weak asymptotics of Frobenius numbers with three arguments. Sbornik. Mathematics, Tome 200 (2009) no. 4, pp. 597-627. http://geodesic.mathdoc.fr/item/SM_2009_200_4_a6/
