@article{SM_2009_200_4_a6,
author = {A. V. Ustinov},
title = {The solution of {Arnold's} problem on the weak asymptotics of {Frobenius} numbers with three arguments},
journal = {Sbornik. Mathematics},
pages = {597--627},
year = {2009},
volume = {200},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2009_200_4_a6/}
}
A. V. Ustinov. The solution of Arnold's problem on the weak asymptotics of Frobenius numbers with three arguments. Sbornik. Mathematics, Tome 200 (2009) no. 4, pp. 597-627. http://geodesic.mathdoc.fr/item/SM_2009_200_4_a6/
[1] J. L. Ramírez Alfonsín, The Diophantine Frobenius problem, Oxford Lecture Ser. Math. Appl., 30, Oxford Univ. Press, Oxford, 2005 | MR | Zbl
[2] J. J. Sylvester, “Problem 7382”, Educational Times, 37, 1884, 26
[3] Ö. J. Rödseth, “On a linear Diophantine problem of Frobenius”, J. Reine Angew. Math., 301 (1978), 171–178 | MR | Zbl
[4] E. S. Selmer, Ö. Beyer, “On the linear Diophantine problem of Frobenius in three variables”, J. Reine Angew. Math., 301 (1978), 161–170 | MR | Zbl
[5] L. G. Fel, “Frobenius problem for semigroups $S(d_1,d_2,d_3)$”, Funct. Anal. Other Math., 1:2 (2006), 119–157 | DOI | MR | Zbl
[6] L. G. Fel, “Analytic representations in the three-dimensional Frobenius problem”, Funct. Anal. Other Math., 2:1 (2008), 27–44 | DOI | MR
[7] R. Kannan, “Lattice translates of a polytope and the Frobenius problem”, Combinatorica, 12:2 (1992), 161–177 | DOI | MR | Zbl
[8] R. M. Karp, “Reducibility among combinatorial problems”, Complexity of computer computations (Proc. Sympos. IBM Thomas J. Watson Res. Center, Yorktown Heights, NY, 1972), Plenum, New York, 1972, 85–103 | MR
[9] J. L. Davison, “On the linear diophantine problem of Frobenius”, J. Number Theory, 48:3 (1994), 353–363 | DOI | MR | Zbl
[10] V. I. Arnold, Arnold's problems, Springer-Verlag, Berlin, 2004 | MR | MR | Zbl
[11] V. I. Arnold, Ekmperimentalnoe nablyudenie matematicheskikh faktov, MTsNMO, M., 2006
[12] M. Beck, D. Einstein, Sh. Zacks, “Some experimental results on the Frobenius problem”, Experiment. Math., 12:3 (2003), 263–269 | MR | Zbl
[13] D. Beihoffer, J. Hendry, A. Nijenhuis, S. Wagon, “Faster algorithms for Frobenius numbers”, Electron. J. Combin., 12:1 (2005), research paper 27 | MR | Zbl
[14] J. Bourgain, Ya. G. Sinai, “Limit behaviour of large Frobenius numbers”, Russian Math. Surveys, 62:4 (2007), 713–725 | DOI | MR | Zbl
[15] A. V. Ustinov, “On the statistical properties of elements of continued fractions”, Dokl. Math., 79:1 (2009), 87–89 | DOI
[16] A. V. Ustinov, “Calculation of the variance in a problem in the theory of continued fractions”, Sb. Math., 198:6 (2007), 887–907 | DOI | MR | Zbl
[17] A. V. Ustinov, “Asymptotic behaviour of the first and second moments for the number of steps in the Euclidean algorithm”, Izv. Math., 72:5 (2008), 1023–1059 | DOI | MR | Zbl
[18] A. V. Ustinov, “O chisle reshenii sravneniya $xy\equiv l(\operatorname{mod}q)$ pod grafikom dvazhdy nepreryvno differentsiruemoi funktsii”, Algebra i analiz, 20:5 (2008), 186–216 | MR
[19] O. Perron, Die Lehre von den Kettenbrüchen. Bd I. Elementare Kettenbrüche, Teubner Verlagsgesellschaft, Stuttgart, 1954 | MR | Zbl
[20] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete mathematics. A foundation for computer science, Addison-Wesley, Reading, MA, 1989 | MR | Zbl
[21] A. V. Ustinov, “A short proof of Euler's identity for continuants”, Math. Notes, 79:1–2 (2006), 146–147 | DOI | MR | Zbl
[22] E. W. Weisstein, CRC concise encyclopedia of mathematics, Chapman Hall, Boca Raton, FL, 2003 | MR | Zbl
[23] A. V. Ustinov, “On statistical properties of finite continued fractions”, J. Math. Sci. (N. Y.), 137:2 (2006), 4722–4738 | DOI | MR | Zbl
[24] A. C. Yao, D. E. Knuth, “Analysis of the subtractive algorithm for greatest common divisors”, Proc. Nat. Acad. Sci. U.S.A., 72:12 (1975), 4720–4722 | DOI | MR | Zbl
[25] S. M. Johnson, “A linear diophantine problem”, Canad. J. Math., 12 (1960), 390–398 | MR | Zbl
[26] V. A. Bykovskii, “Asimptoticheskie svoistva tselykh tochek ($a_1$, $a_2$), udovletvoryayuschikh sravneniyu $a_1a_2\equiv l\ (\operatorname{mod} q)$”, Analiticheskaya teoriya chisel i teoriya funktsii – 4, Zapiski nauch. sem. LOMI, 112, Nauka, L., 1981, 5–25 | MR | Zbl
[27] T. Estermann, “On Kloosterman's sum”, Mathematika, 8 (1961), 83–86 | MR | Zbl
[28] J. W. Porter, “On a theorem of Heilbronn”, Mathematika, 22:1 (1975), 20–28 | MR | Zbl