Generalized Pollaczek polynomials
Sbornik. Mathematics, Tome 200 (2009) no. 4, pp. 577-595 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For multiple orthogonal polynomials with respect to two Pollaczek weight functions weak asymptotics are obtained. It is shown that a solution of a vector equilibrium problem of the theory of logarithmic potential in the presence of an external field and with restriction imposed on the measures is given by the limit measure of the distribution of zeros. Bibliography: 17 titles.
Keywords: Pollaczek polynomials, vector equilibrium problem.
Mots-clés : multiple orthogonal polynomials
@article{SM_2009_200_4_a5,
     author = {V. N. Sorokin},
     title = {Generalized {Pollaczek} polynomials},
     journal = {Sbornik. Mathematics},
     pages = {577--595},
     year = {2009},
     volume = {200},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_4_a5/}
}
TY  - JOUR
AU  - V. N. Sorokin
TI  - Generalized Pollaczek polynomials
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 577
EP  - 595
VL  - 200
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_4_a5/
LA  - en
ID  - SM_2009_200_4_a5
ER  - 
%0 Journal Article
%A V. N. Sorokin
%T Generalized Pollaczek polynomials
%J Sbornik. Mathematics
%D 2009
%P 577-595
%V 200
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2009_200_4_a5/
%G en
%F SM_2009_200_4_a5
V. N. Sorokin. Generalized Pollaczek polynomials. Sbornik. Mathematics, Tome 200 (2009) no. 4, pp. 577-595. http://geodesic.mathdoc.fr/item/SM_2009_200_4_a5/

[1] E. M. Nikišin, “On simultaneous Padé approximants”, Math. USSR-Sb., 41:4 (1982), 409–425 | DOI | MR | Zbl | Zbl

[2] E. M. Nikišin, “The asymptotic behavior of linear forms for joint Padé approximations”, Soviet Math. (Iz. VUZ), 30:2 (1986), 43–52 | MR | Zbl

[3] E. M. Nikishin, V. N. Sorokin, Rational approximations and orthogonality, Transl. Math. Monogr., 92, Amer. Math. Soc., Providence, RI, 1991 | MR | MR | Zbl | Zbl

[4] A. A. Gonchar, E. A. Rakhmanov, V. N. Sorokin, “Hermite–Padé approximants for systems of Markov-type functions”, Sb. Math., 188:5 (1997), 671–696 | DOI | MR | Zbl

[5] N. S. Landkof, Foundations of modern potential theory, Grundlehren Math. Wiss., 180, Springer-Verlag, Berlin–Heidelberg–New York, 1972 | MR | MR | Zbl | Zbl

[6] E. A. Rakhmanov, “On asymptotic properties of polynomials orthogonal on the real axis”, Math. USSR-Sb., 47:1 (1984), 155–193 | DOI | MR | Zbl | Zbl

[7] V. G. Lysov, “Strong asymptotics of the Hermite–Padé approximants for a system of Stieltjes functions with Laguerre weight”, Sb. Math., 196:12 (2005), 1815–1840 | DOI | MR | Zbl

[8] A. A. Gonchar, E. A. Rakhmanov, “Equilibrium distributions and degree of rational approximation of analytic functions”, Math. USSR-Sb., 62:2 (1989), 305–348 | DOI | MR | Zbl | Zbl

[9] V. N. Sorokin, E. N. Cherednikova, “Some notes on approximation of logarithms”, Moscow Univ. Math. Bull., 62:2 (2007), 61–66 | DOI | MR | Zbl

[10] E. A. Rakhmanov, “Equilibrium measure and the distribution of zeros of the extremal polynomials of a discrete variable”, Sb. Math., 187:8 (1996), 1213–1228 | DOI | MR | Zbl

[11] E. Coussement, W. Van Assche, “Asymptotics of multiple orthogonal polynomials associated with the modified Bessel functions of the first kind”, J. Comput. Appl. Math., 153:1–2 (2003), 141–149 | DOI | MR | Zbl

[12] E. Coussement, W. Van Assche, “Multiple orthogonal polynomials associated with the modified Bessel functions of the first kind”, Constr. Approx., 19:2 (2003), 237–263 | DOI | MR | Zbl

[13] A. B. J. Kuijlaars, A. Martínez-Finkelshtein, F. Wielonsky, “Non-intersecting squared Bessel paths and multiple orthogonal polynomials for modified Bessel weights”, Comm. Math., 286:1 (2009), 217–275 | DOI

[14] M. Duits, A. B. J. Kuijlaars, “Universality in the two matrix model: a Riemann–Hilbert steepest descent analysis”, Comm. Pure Appl. Math. (to appear)

[15] A. A. Kandayan, “Mnogotochechnye approksimatsii Pade beta-funktsii”, Matem. zametki, 85:2 (2009), 189–203

[16] A. A. Gonchar, E. A. Rakhmanov, “On the equilibrium problem for vector potentials”, Russian Math. Surveys, 40:4 (1985), 183–184 | DOI | MR | Zbl

[17] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, vol. II, McGraw-Hill, New York–Toronto–London, 1953 | MR | MR | Zbl | Zbl