Mots-clés : multiple orthogonal polynomials
@article{SM_2009_200_4_a5,
author = {V. N. Sorokin},
title = {Generalized {Pollaczek} polynomials},
journal = {Sbornik. Mathematics},
pages = {577--595},
year = {2009},
volume = {200},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2009_200_4_a5/}
}
V. N. Sorokin. Generalized Pollaczek polynomials. Sbornik. Mathematics, Tome 200 (2009) no. 4, pp. 577-595. http://geodesic.mathdoc.fr/item/SM_2009_200_4_a5/
[1] E. M. Nikišin, “On simultaneous Padé approximants”, Math. USSR-Sb., 41:4 (1982), 409–425 | DOI | MR | Zbl | Zbl
[2] E. M. Nikišin, “The asymptotic behavior of linear forms for joint Padé approximations”, Soviet Math. (Iz. VUZ), 30:2 (1986), 43–52 | MR | Zbl
[3] E. M. Nikishin, V. N. Sorokin, Rational approximations and orthogonality, Transl. Math. Monogr., 92, Amer. Math. Soc., Providence, RI, 1991 | MR | MR | Zbl | Zbl
[4] A. A. Gonchar, E. A. Rakhmanov, V. N. Sorokin, “Hermite–Padé approximants for systems of Markov-type functions”, Sb. Math., 188:5 (1997), 671–696 | DOI | MR | Zbl
[5] N. S. Landkof, Foundations of modern potential theory, Grundlehren Math. Wiss., 180, Springer-Verlag, Berlin–Heidelberg–New York, 1972 | MR | MR | Zbl | Zbl
[6] E. A. Rakhmanov, “On asymptotic properties of polynomials orthogonal on the real axis”, Math. USSR-Sb., 47:1 (1984), 155–193 | DOI | MR | Zbl | Zbl
[7] V. G. Lysov, “Strong asymptotics of the Hermite–Padé approximants for a system of Stieltjes functions with Laguerre weight”, Sb. Math., 196:12 (2005), 1815–1840 | DOI | MR | Zbl
[8] A. A. Gonchar, E. A. Rakhmanov, “Equilibrium distributions and degree of rational approximation of analytic functions”, Math. USSR-Sb., 62:2 (1989), 305–348 | DOI | MR | Zbl | Zbl
[9] V. N. Sorokin, E. N. Cherednikova, “Some notes on approximation of logarithms”, Moscow Univ. Math. Bull., 62:2 (2007), 61–66 | DOI | MR | Zbl
[10] E. A. Rakhmanov, “Equilibrium measure and the distribution of zeros of the extremal polynomials of a discrete variable”, Sb. Math., 187:8 (1996), 1213–1228 | DOI | MR | Zbl
[11] E. Coussement, W. Van Assche, “Asymptotics of multiple orthogonal polynomials associated with the modified Bessel functions of the first kind”, J. Comput. Appl. Math., 153:1–2 (2003), 141–149 | DOI | MR | Zbl
[12] E. Coussement, W. Van Assche, “Multiple orthogonal polynomials associated with the modified Bessel functions of the first kind”, Constr. Approx., 19:2 (2003), 237–263 | DOI | MR | Zbl
[13] A. B. J. Kuijlaars, A. Martínez-Finkelshtein, F. Wielonsky, “Non-intersecting squared Bessel paths and multiple orthogonal polynomials for modified Bessel weights”, Comm. Math., 286:1 (2009), 217–275 | DOI
[14] M. Duits, A. B. J. Kuijlaars, “Universality in the two matrix model: a Riemann–Hilbert steepest descent analysis”, Comm. Pure Appl. Math. (to appear)
[15] A. A. Kandayan, “Mnogotochechnye approksimatsii Pade beta-funktsii”, Matem. zametki, 85:2 (2009), 189–203
[16] A. A. Gonchar, E. A. Rakhmanov, “On the equilibrium problem for vector potentials”, Russian Math. Surveys, 40:4 (1985), 183–184 | DOI | MR | Zbl
[17] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, vol. II, McGraw-Hill, New York–Toronto–London, 1953 | MR | MR | Zbl | Zbl