Mots-clés : equations of hydrodynamic type.
@article{SM_2009_200_4_a3,
author = {M. O. Korpusov and A. G. Sveshnikov},
title = {Blow-up of {Oskolkov's} system of equations},
journal = {Sbornik. Mathematics},
pages = {549--572},
year = {2009},
volume = {200},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2009_200_4_a3/}
}
M. O. Korpusov; A. G. Sveshnikov. Blow-up of Oskolkov's system of equations. Sbornik. Mathematics, Tome 200 (2009) no. 4, pp. 549-572. http://geodesic.mathdoc.fr/item/SM_2009_200_4_a3/
[1] A. P. Oskolkov, “Some nonstationary linear and quasilinear systems occurring in the investigation of the motion of viscous fluids”, J. Math. Sci., 10:2 (1978), 299–335 | DOI | MR | Zbl | Zbl
[2] A. P. Oskolkov, “Nonlocal problems for the equations of Kelvin–Voight fluids and their $\varepsilon$-approximations”, J. Math. Sci. (New York), 87:2 (1997), 3393–3408 | DOI | MR | Zbl | Zbl
[3] O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Gordon and Breach, New York–London–Paris, 1969 | MR | MR | Zbl | Zbl
[4] A. P. Oskolkov, “O razreshimosti v tselom pervoi kraevoi zadachi dlya odnoi kvazilineinoi sistemy 3-go poryadka, vstrechayuscheisya pri izuchenii dvizheniya vyazkoi zhidkosti”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 6, Zapiski nauch. sem. LOMI, 27, Nauka, L., 1972, 145–160 | MR | Zbl
[5] A. P. Oskolkov, “Ob odnoi nestatsionarnoi sisteme s malym parametrom, regulyariziruyuschii sistemu uravnenii Nave–Stoksa”, Problemy matemematicheskogo analiza. Vypusk 4. Integralnye i differentsialnye operatory. Differentsialnye uravneniya, Izd-vo Leningr. un-ta, L., 1973, 78–87 | MR
[6] A. P. Oskolkov, “O edinstvennosti i razreshimosti v tselom kraevykh zadach dlya uravnenii dvizheniya vodnykh rastvorov polimerov”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 7, Zapiski nauch. sem. LOMI, 38, Nauka, L., 1973, 98–136 | MR | Zbl
[7] G. A. Sviridyuk, “A model of dynamics of incompressible viscoelastic liquid”, Soviet Math. (Iz. VUZ), 32:1 (1988), 94–100 | MR | Zbl
[8] G. A. Sviridyuk, “On a model for dynamics of weak-compressible viscous-elastic liquid”, Russian Math. (Iz. VUZ), 38:1 (1994), 59–68 | MR | Zbl
[9] G. V. Demidenko, S. V. Uspenskii, Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauchnaya kniga, Novosibirsk, 1998 | MR | Zbl
[10] H. A. Levine, “Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_t=-Au+F(u)$”, Arch. Rational Mech. Anal., 51:5 (1973), 371–386 | DOI | MR | Zbl
[11] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhailov, Blow-up in quasilinear parabolic equations, de Gruyter Exp. Math., 19, de Gruyter, Berlin, 1995 | MR | MR | Zbl | Zbl
[12] E. Mitidieri, S I. Pohozaev, “A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities”, Proc. Steklov Inst. Math., 234 (2001), 1–362 | MR | Zbl | Zbl
[13] V. K. Kalantarov, O. A. Ladyzhenskaya, “The occurrence of collapse for quasilinear equations of parabolic and hyperbolic types”, J. Soviet Math., 10:1 (1978), 53–70 | DOI | MR | Zbl | Zbl
[14] A. G. Sveshnikov, A. B. Alshin, M. O. Korpusov, Yu. D. Pletner, Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007
[15] N. Hayashi, E. I. Kaikina, P. I. Naumkin, I. A. Shishmarev, Asymptotics for dissipative nonlinear equations, Lecture Notes in Math., 1884, Springer-Verlag, Berlin, 2006 | DOI | MR | Zbl
[16] R. Temam, Navier–Stokes equations. Theory and numerical analysis, Stud. Math. Appl., 2, North-Holland, Amsterdam–New York, 1979 | MR | MR | Zbl | Zbl
[17] E. Hille, R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ., 31, Amer. Math. Soc., Providence, RI, 1957 | MR | MR | Zbl
[18] H. Gajewski, K. Gröger, K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974 | MR | MR | Zbl
[19] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, de Gruyter, Paris, 1969 | MR | MR | Zbl | Zbl