Blow-up of Oskolkov's system of equations
Sbornik. Mathematics, Tome 200 (2009) no. 4, pp. 549-572 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Oskolkov's system of equations with a cubic source is considered; this describes the dynamics of a viscoelastic fluid. Local solvability (with respect to time) of the problem in the weak generalized sense is proved. Some conditions on the initial function which ensure that the solution blows up in finite time are found, and two-sided estimates for the existence time of the solution are obtained. Moreover, sufficient conditions for the global solvability (with respect to time) of the problem are found. Bibliography: 19 titles.
Keywords: blow-up for Oskolkov's system of equations, generalized solution
Mots-clés : equations of hydrodynamic type.
@article{SM_2009_200_4_a3,
     author = {M. O. Korpusov and A. G. Sveshnikov},
     title = {Blow-up of {Oskolkov's} system of equations},
     journal = {Sbornik. Mathematics},
     pages = {549--572},
     year = {2009},
     volume = {200},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_4_a3/}
}
TY  - JOUR
AU  - M. O. Korpusov
AU  - A. G. Sveshnikov
TI  - Blow-up of Oskolkov's system of equations
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 549
EP  - 572
VL  - 200
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_4_a3/
LA  - en
ID  - SM_2009_200_4_a3
ER  - 
%0 Journal Article
%A M. O. Korpusov
%A A. G. Sveshnikov
%T Blow-up of Oskolkov's system of equations
%J Sbornik. Mathematics
%D 2009
%P 549-572
%V 200
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2009_200_4_a3/
%G en
%F SM_2009_200_4_a3
M. O. Korpusov; A. G. Sveshnikov. Blow-up of Oskolkov's system of equations. Sbornik. Mathematics, Tome 200 (2009) no. 4, pp. 549-572. http://geodesic.mathdoc.fr/item/SM_2009_200_4_a3/

[1] A. P. Oskolkov, “Some nonstationary linear and quasilinear systems occurring in the investigation of the motion of viscous fluids”, J. Math. Sci., 10:2 (1978), 299–335 | DOI | MR | Zbl | Zbl

[2] A. P. Oskolkov, “Nonlocal problems for the equations of Kelvin–Voight fluids and their $\varepsilon$-approximations”, J. Math. Sci. (New York), 87:2 (1997), 3393–3408 | DOI | MR | Zbl | Zbl

[3] O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Gordon and Breach, New York–London–Paris, 1969 | MR | MR | Zbl | Zbl

[4] A. P. Oskolkov, “O razreshimosti v tselom pervoi kraevoi zadachi dlya odnoi kvazilineinoi sistemy 3-go poryadka, vstrechayuscheisya pri izuchenii dvizheniya vyazkoi zhidkosti”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 6, Zapiski nauch. sem. LOMI, 27, Nauka, L., 1972, 145–160 | MR | Zbl

[5] A. P. Oskolkov, “Ob odnoi nestatsionarnoi sisteme s malym parametrom, regulyariziruyuschii sistemu uravnenii Nave–Stoksa”, Problemy matemematicheskogo analiza. Vypusk 4. Integralnye i differentsialnye operatory. Differentsialnye uravneniya, Izd-vo Leningr. un-ta, L., 1973, 78–87 | MR

[6] A. P. Oskolkov, “O edinstvennosti i razreshimosti v tselom kraevykh zadach dlya uravnenii dvizheniya vodnykh rastvorov polimerov”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 7, Zapiski nauch. sem. LOMI, 38, Nauka, L., 1973, 98–136 | MR | Zbl

[7] G. A. Sviridyuk, “A model of dynamics of incompressible viscoelastic liquid”, Soviet Math. (Iz. VUZ), 32:1 (1988), 94–100 | MR | Zbl

[8] G. A. Sviridyuk, “On a model for dynamics of weak-compressible viscous-elastic liquid”, Russian Math. (Iz. VUZ), 38:1 (1994), 59–68 | MR | Zbl

[9] G. V. Demidenko, S. V. Uspenskii, Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauchnaya kniga, Novosibirsk, 1998 | MR | Zbl

[10] H. A. Levine, “Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_t=-Au+F(u)$”, Arch. Rational Mech. Anal., 51:5 (1973), 371–386 | DOI | MR | Zbl

[11] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhailov, Blow-up in quasilinear parabolic equations, de Gruyter Exp. Math., 19, de Gruyter, Berlin, 1995 | MR | MR | Zbl | Zbl

[12] E. Mitidieri, S I. Pohozaev, “A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities”, Proc. Steklov Inst. Math., 234 (2001), 1–362 | MR | Zbl | Zbl

[13] V. K. Kalantarov, O. A. Ladyzhenskaya, “The occurrence of collapse for quasilinear equations of parabolic and hyperbolic types”, J. Soviet Math., 10:1 (1978), 53–70 | DOI | MR | Zbl | Zbl

[14] A. G. Sveshnikov, A. B. Alshin, M. O. Korpusov, Yu. D. Pletner, Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007

[15] N. Hayashi, E. I. Kaikina, P. I. Naumkin, I. A. Shishmarev, Asymptotics for dissipative nonlinear equations, Lecture Notes in Math., 1884, Springer-Verlag, Berlin, 2006 | DOI | MR | Zbl

[16] R. Temam, Navier–Stokes equations. Theory and numerical analysis, Stud. Math. Appl., 2, North-Holland, Amsterdam–New York, 1979 | MR | MR | Zbl | Zbl

[17] E. Hille, R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ., 31, Amer. Math. Soc., Providence, RI, 1957 | MR | MR | Zbl

[18] H. Gajewski, K. Gröger, K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974 | MR | MR | Zbl

[19] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, de Gruyter, Paris, 1969 | MR | MR | Zbl | Zbl