@article{SM_2009_200_4_a2,
author = {G. A. Karagulyan},
title = {On {Riemann} sums and maximal functions in~$\mathbb R^n$},
journal = {Sbornik. Mathematics},
pages = {521--548},
year = {2009},
volume = {200},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2009_200_4_a2/}
}
G. A. Karagulyan. On Riemann sums and maximal functions in $\mathbb R^n$. Sbornik. Mathematics, Tome 200 (2009) no. 4, pp. 521-548. http://geodesic.mathdoc.fr/item/SM_2009_200_4_a2/
[1] B. Jessen, “On the approximation of Lebesgue integrals by Riemann sums”, Ann. of Math. (2), 35:2 (1934), 248–251 | DOI | MR | Zbl
[2] W. Rudin, “An arithmetic property of Riemann sums”, Proc. Amer. Math. Soc., 15:2 (1964), 321–324 | DOI | MR | Zbl
[3] L. E. Dubins, J. Pitman, “A pointwise ergodic theorem for the group of rational rotations”, Trans. Amer. Math. Soc., 251 (1979), 299–308 | DOI | MR | Zbl
[4] Ya. Bugeaud, M. Weber, “Examples and counterexamples for Riemann sums”, Indag. Math. (N.S.), 9:1 (1998), 1–13 | DOI | MR | Zbl
[5] A. Zygmund, Trigonometric series, vols. II, Cambridge Univ. Press, New York, 1959 | MR | Zbl | Zbl
[6] R. Nair, “On Riemann sums and Lebesgue integrals”, Monatsh. Math., 120:1 (1995), 49–54 | DOI | MR | Zbl
[7] R. C. Baker, “Riemann sums and Lebesgue integrals”, Quart. J. Math. Oxford Ser. (2), 27 (1976), 191–198 | DOI | MR | Zbl
[8] J.-J. Ruch, M. Weber, “On Riemann sums”, Note Mat., 26:2 (2006), 1–50 | MR | Zbl
[9] P. Khalmosh, Teoriya mery, IL, M., 1953 ; P. R. Halmos, Measure theory, Nostrand, New York; Macmillan, London, 1950 | MR | MR | Zbl
[10] J. Neveu, Bases mathématiques du calcul des probabilités, Masson et Cie, Paris, 1964 | MR | MR | Zbl | Zbl
[11] M. A. Krasnoselḱi\v i, Ja. B. Ruticki\v i, Convex functions and Orlicz spaces, Noordhoff, Groningen, 1961 | MR | MR | Zbl | Zbl
[12] G. A. Karagulyan, “On the order of growth $o(\log\log n)$ of the partial sums of Fourier–Stieltjes series of random measures”, Russian Acad. Sci. Sb. Math., 78:1 (1994), 11–33 | DOI | MR | Zbl
[13] E. M. Stein, “On limits of sequences of operators”, Ann. of Math. (2), 74:1 (1961), 140–170 | DOI | MR | Zbl
[14] E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Math. Ser., 43, Princeton, NJ, Princeton Unev. Press, 1993 | MR | Zbl
[15] B. Jessen, J. Marcinkiewicz, A. Zygmund, “Note on the differentiability of multiple integrals”, Fund. Math., 25 (1935), 217–234 | Zbl
[16] M. de Guzmán, Differentiation of integrals in ${\mathbb R}^n$, Lecture Notes in Math., 481, Springer-Verlag, Berlin–New York, 1975 | DOI | MR | MR | Zbl
[17] S. Saks, “Remark on the differentiability of the Lebesgue indefinite integral”, Fund. Math., 22 (1934), 257–261 | Zbl
[18] A. M. Stokolos, “On weak type inequalities for rare maximal functions in ${\mathbb R}^n$”, Colloq. Math., 104:2 (2006), 311–315 | DOI | MR | Zbl
[19] K. Hare, A. Stokolos, “On weak type inequalities for rare maximal functions”, Colloq. Math., 83:2 (2000), 173–182 | MR | Zbl
[20] M. Akcoglu, A. Bellow, R. L. Jones, V. Losert, K. Reinhold-Larssona, M. Wierdl, “The strong sweeping out property for lacunary sequences, Riemann sums, convolution powers, and related matters”, Ergodic Theory Dynam. Systems, 16:2 (1996), 207–253 | DOI | MR | Zbl
[21] M. A. Akcoglu, M. D. Ha, R. L. Jones, “Sweeping out properties of operator sequences”, Canad. J. Math., 49:1 (1997), 3–23 | MR | Zbl
[22] J. M. Marstrand, “On Khinchin's conjecture about strong uniform distribution”, Proc. London Math. Soc. (3), 21 (1970), 540–556 | DOI | MR | Zbl
[23] J. Bourgain, “Almost sure convergence and bounded entropy”, Israel J. Math, 63:1 (1988), 79–97 | DOI | MR | Zbl