On Riemann sums and maximal functions in $\mathbb R^n$
Sbornik. Mathematics, Tome 200 (2009) no. 4, pp. 521-548 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate problems on a.e. convergence of Riemann sums \begin{equation*} R_nf(x)=\frac1n\sum_{k=0}^{n-1}f\biggl(x+\frac kn\biggr), \qquad x\in\mathbb T, \end{equation*} with the use of classical maximal functions in $\mathbb R^n$. A theorem on the equivalence of Riemann and ordinary maximal functions is proved, which allows us to use techniques and results of the theory of differentiation of integrals in $\mathbb R^n$ in these problems. Using this method we prove that for a certain sequence $\{n_k\}$ the Riemann sums $R_{n_k}f(x)$ converge a.e. to $f\in L^p$, $p>1$. Bibliography: 23 titles.
Keywords: Riemann sums, maximal functions, covering lemmas, sweeping out properties.
@article{SM_2009_200_4_a2,
     author = {G. A. Karagulyan},
     title = {On {Riemann} sums and maximal functions in~$\mathbb R^n$},
     journal = {Sbornik. Mathematics},
     pages = {521--548},
     year = {2009},
     volume = {200},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_4_a2/}
}
TY  - JOUR
AU  - G. A. Karagulyan
TI  - On Riemann sums and maximal functions in $\mathbb R^n$
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 521
EP  - 548
VL  - 200
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_4_a2/
LA  - en
ID  - SM_2009_200_4_a2
ER  - 
%0 Journal Article
%A G. A. Karagulyan
%T On Riemann sums and maximal functions in $\mathbb R^n$
%J Sbornik. Mathematics
%D 2009
%P 521-548
%V 200
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2009_200_4_a2/
%G en
%F SM_2009_200_4_a2
G. A. Karagulyan. On Riemann sums and maximal functions in $\mathbb R^n$. Sbornik. Mathematics, Tome 200 (2009) no. 4, pp. 521-548. http://geodesic.mathdoc.fr/item/SM_2009_200_4_a2/

[1] B. Jessen, “On the approximation of Lebesgue integrals by Riemann sums”, Ann. of Math. (2), 35:2 (1934), 248–251 | DOI | MR | Zbl

[2] W. Rudin, “An arithmetic property of Riemann sums”, Proc. Amer. Math. Soc., 15:2 (1964), 321–324 | DOI | MR | Zbl

[3] L. E. Dubins, J. Pitman, “A pointwise ergodic theorem for the group of rational rotations”, Trans. Amer. Math. Soc., 251 (1979), 299–308 | DOI | MR | Zbl

[4] Ya. Bugeaud, M. Weber, “Examples and counterexamples for Riemann sums”, Indag. Math. (N.S.), 9:1 (1998), 1–13 | DOI | MR | Zbl

[5] A. Zygmund, Trigonometric series, vols. II, Cambridge Univ. Press, New York, 1959 | MR | Zbl | Zbl

[6] R. Nair, “On Riemann sums and Lebesgue integrals”, Monatsh. Math., 120:1 (1995), 49–54 | DOI | MR | Zbl

[7] R. C. Baker, “Riemann sums and Lebesgue integrals”, Quart. J. Math. Oxford Ser. (2), 27 (1976), 191–198 | DOI | MR | Zbl

[8] J.-J. Ruch, M. Weber, “On Riemann sums”, Note Mat., 26:2 (2006), 1–50 | MR | Zbl

[9] P. Khalmosh, Teoriya mery, IL, M., 1953 ; P. R. Halmos, Measure theory, Nostrand, New York; Macmillan, London, 1950 | MR | MR | Zbl

[10] J. Neveu, Bases mathématiques du calcul des probabilités, Masson et Cie, Paris, 1964 | MR | MR | Zbl | Zbl

[11] M. A. Krasnoselḱi\v i, Ja. B. Ruticki\v i, Convex functions and Orlicz spaces, Noordhoff, Groningen, 1961 | MR | MR | Zbl | Zbl

[12] G. A. Karagulyan, “On the order of growth $o(\log\log n)$ of the partial sums of Fourier–Stieltjes series of random measures”, Russian Acad. Sci. Sb. Math., 78:1 (1994), 11–33 | DOI | MR | Zbl

[13] E. M. Stein, “On limits of sequences of operators”, Ann. of Math. (2), 74:1 (1961), 140–170 | DOI | MR | Zbl

[14] E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Math. Ser., 43, Princeton, NJ, Princeton Unev. Press, 1993 | MR | Zbl

[15] B. Jessen, J. Marcinkiewicz, A. Zygmund, “Note on the differentiability of multiple integrals”, Fund. Math., 25 (1935), 217–234 | Zbl

[16] M. de Guzmán, Differentiation of integrals in ${\mathbb R}^n$, Lecture Notes in Math., 481, Springer-Verlag, Berlin–New York, 1975 | DOI | MR | MR | Zbl

[17] S. Saks, “Remark on the differentiability of the Lebesgue indefinite integral”, Fund. Math., 22 (1934), 257–261 | Zbl

[18] A. M. Stokolos, “On weak type inequalities for rare maximal functions in ${\mathbb R}^n$”, Colloq. Math., 104:2 (2006), 311–315 | DOI | MR | Zbl

[19] K. Hare, A. Stokolos, “On weak type inequalities for rare maximal functions”, Colloq. Math., 83:2 (2000), 173–182 | MR | Zbl

[20] M. Akcoglu, A. Bellow, R. L. Jones, V. Losert, K. Reinhold-Larssona, M. Wierdl, “The strong sweeping out property for lacunary sequences, Riemann sums, convolution powers, and related matters”, Ergodic Theory Dynam. Systems, 16:2 (1996), 207–253 | DOI | MR | Zbl

[21] M. A. Akcoglu, M. D. Ha, R. L. Jones, “Sweeping out properties of operator sequences”, Canad. J. Math., 49:1 (1997), 3–23 | MR | Zbl

[22] J. M. Marstrand, “On Khinchin's conjecture about strong uniform distribution”, Proc. London Math. Soc. (3), 21 (1970), 540–556 | DOI | MR | Zbl

[23] J. Bourgain, “Almost sure convergence and bounded entropy”, Israel J. Math, 63:1 (1988), 79–97 | DOI | MR | Zbl