Trajectory attractors of reaction-diffusion systems with small diffusion
Sbornik. Mathematics, Tome 200 (2009) no. 4, pp. 471-497 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a reaction-diffusion system of two equations, where one equation has a small diffusion coefficient $\delta>0$. We construct the trajectory attractor $\mathfrak A^\delta$ of such a system. We also study the limit system for $\delta=0$. In this system one equation is an ordinary differential equation in $t$, but is considered in the domain $\Omega\times\mathbb R_+$, where $\Omega\Subset\mathbb R^n$ and $\mathbb R_+$ is the positive time axis, $t$. We construct the trajectory attractor $\mathfrak A^0$ of the limit system. The main result is a convergence theorem: $\mathfrak A^\delta\to\mathfrak A^0$ as $\delta\to0^+$ in the corresponding topology. Bibliography: 18 titles.
Keywords: trajectory attractor
Mots-clés : reaction-diffusion equations.
@article{SM_2009_200_4_a0,
     author = {M. I. Vishik and V. V. Chepyzhov},
     title = {Trajectory attractors of reaction-diffusion systems with small diffusion},
     journal = {Sbornik. Mathematics},
     pages = {471--497},
     year = {2009},
     volume = {200},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_4_a0/}
}
TY  - JOUR
AU  - M. I. Vishik
AU  - V. V. Chepyzhov
TI  - Trajectory attractors of reaction-diffusion systems with small diffusion
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 471
EP  - 497
VL  - 200
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_4_a0/
LA  - en
ID  - SM_2009_200_4_a0
ER  - 
%0 Journal Article
%A M. I. Vishik
%A V. V. Chepyzhov
%T Trajectory attractors of reaction-diffusion systems with small diffusion
%J Sbornik. Mathematics
%D 2009
%P 471-497
%V 200
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2009_200_4_a0/
%G en
%F SM_2009_200_4_a0
M. I. Vishik; V. V. Chepyzhov. Trajectory attractors of reaction-diffusion systems with small diffusion. Sbornik. Mathematics, Tome 200 (2009) no. 4, pp. 471-497. http://geodesic.mathdoc.fr/item/SM_2009_200_4_a0/

[1] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Appl. Math. Sci., 68, Springer-Verlag, New York, 1988 | MR | Zbl

[2] A. V. Babin, M. I. Vishik, Attractors of evolution equations, Stud. Math. Appl., 25, North-Holland, Amsterdam, 1992 | MR | MR | Zbl | Zbl

[3] V. V. Chepyzhov, M. I. Vishik, Attractors for equations of mathematical physics, Amer. Math. Soc. Colloq. Publ., 49, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[4] J. K. Hale, Asymptotic behavior of dissipative systems, Math. Surveys Monogr., 25, Amer. Math. Soc., Providence, RI, 1988 | MR | Zbl

[5] J. C. Robinson, Infinite-dimensional dynamical systems, An introduction to dissipative parabolic PDEs and the theory of global attractors, Cambridge Texts Appl. Math., Cambridge Univ. Press, Cambridge, 2001 | MR | Zbl

[6] V. V. Chepyzhov, M. I. Vishik, “Trajectory attractors for evolution equations”, C. R. Acad. Sci. Paris Sér. I Math., 321:10 (1995), 1309–1314 | MR | Zbl

[7] V. V. Chepyzhov, M. I. Vishik, “Trajectory attractors for reaction-diffusion systems”, Topol. Methods Nonlinear Anal., 7:1 (1996), 49–76 | MR | Zbl

[8] V. V. Chepyzhov, M. I. Vishik, “Evolution equations and their trajectory attractors”, J. Math. Pures Appl. (9), 76:10 (1997), 913–964 | DOI | MR | Zbl

[9] M. I. Vishik, V. V. Chepyzhov, “Trajectory and global attractors of three-dimensional Navier–Stokes systems”, Math. Notes, 71:1–2 (2002), 177–193 | DOI | MR | Zbl

[10] M. I. Vishik, V. V. Chepyzhov, “Non-autonomous Ginzburg–Landau equation and its attractors”, Sb. Math., 196:6 (2005), 791–815 | DOI | MR | Zbl

[11] M. Marion, “Finite-dimensional attractors associated with partly dissipative reaction-diffusion systems”, SIAM J. Math. Anal., 20:4 (1989), 816–844 | DOI | MR | Zbl

[12] R. Fitz-Hugh, “Impulses and physiological states in theoretical models of nerve membranes”, Biophys. J., 1:445–446 (1961)

[13] J. Nagumo, S. Arimoto, S. Yoshizawa, “An active pulse transmission line simulating nerve axon”, Proc. IRE, 50:10 (1962), 2061–2070 | DOI

[14] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, de Gruyter, Paris, 1969 | MR | MR | Zbl | Zbl

[15] J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, vol. 1, Dunod, Paris, 1968 | MR | MR | Zbl | Zbl

[16] P. S. Aleksandrov, Vvedenie v teoriyu mnozhestv i teoriyu funktsii. Ch. 1. Vvedenie v obschuyu teoriyu mnozhestv i funktsii, Gostekhizdat, M., 1948 | MR | Zbl

[17] J.-P. Aubin, “Un théorème de compacite”, C. R. Acad. Sci. Paris, 256 (1963), 5042–5044 | MR | Zbl

[18] Yu. A. Dubinskii, “Slabaya skhodimost v nelineinykh ellipticheskikh i parabolicheskikh uravneniyakh”, Matem. sb., 67(109):4 (1965), 609–642 | MR | Zbl