Trajectory attractors of reaction-diffusion systems with small diffusion
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 200 (2009) no. 4, pp. 471-497
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider a reaction-diffusion system of two equations, where one equation has a small diffusion coefficient $\delta>0$. We construct the trajectory attractor $\mathfrak A^\delta$ of such a system. We also study the limit system for $\delta=0$. In this system one equation is an ordinary differential equation in $t$, but is considered in the domain $\Omega\times\mathbb R_+$, where $\Omega\Subset\mathbb R^n$ and
 $\mathbb R_+$ is the  positive time axis, $t$. We construct the trajectory attractor $\mathfrak A^0$ of the limit system. The main result is a convergence theorem: $\mathfrak A^\delta\to\mathfrak A^0$ as
$\delta\to0^+$ in the corresponding topology.
Bibliography: 18 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
trajectory attractor
Mots-clés : reaction-diffusion equations.
                    
                  
                
                
                Mots-clés : reaction-diffusion equations.
@article{SM_2009_200_4_a0,
     author = {M. I. Vishik and V. V. Chepyzhov},
     title = {Trajectory attractors of reaction-diffusion systems with small diffusion},
     journal = {Sbornik. Mathematics},
     pages = {471--497},
     publisher = {mathdoc},
     volume = {200},
     number = {4},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_4_a0/}
}
                      
                      
                    M. I. Vishik; V. V. Chepyzhov. Trajectory attractors of reaction-diffusion systems with small diffusion. Sbornik. Mathematics, Tome 200 (2009) no. 4, pp. 471-497. http://geodesic.mathdoc.fr/item/SM_2009_200_4_a0/
