Representation of the reciprocal of an entire function by series of partial fractions and exponential approximation
Sbornik. Mathematics, Tome 200 (2009) no. 3, pp. 455-469 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Conditions under which the reciprocal $1/L(\lambda)$ of an entire function with simple zeros $\lambda_k$ can be represented as a series of partial fractions $c_k/(\lambda-\lambda_k)$, $k=1,2,\dots$, are investigated. The possibility of such a representation is characterized, as is conventional, in terms of a particular ‘asymptotically regular’ behaviour of the function $L(\lambda)$. Applications to complete systems of exponentials on a line interval and to representative systems of exponentials in a convex domain are considered. Bibliography: 18 titles.
Keywords: entire function, series of partial fractions, representative systems of exponentials.
@article{SM_2009_200_3_a7,
     author = {V. B. Sherstyukov},
     title = {Representation of the reciprocal of an entire function by series of partial fractions and exponential approximation},
     journal = {Sbornik. Mathematics},
     pages = {455--469},
     year = {2009},
     volume = {200},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_3_a7/}
}
TY  - JOUR
AU  - V. B. Sherstyukov
TI  - Representation of the reciprocal of an entire function by series of partial fractions and exponential approximation
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 455
EP  - 469
VL  - 200
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_3_a7/
LA  - en
ID  - SM_2009_200_3_a7
ER  - 
%0 Journal Article
%A V. B. Sherstyukov
%T Representation of the reciprocal of an entire function by series of partial fractions and exponential approximation
%J Sbornik. Mathematics
%D 2009
%P 455-469
%V 200
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2009_200_3_a7/
%G en
%F SM_2009_200_3_a7
V. B. Sherstyukov. Representation of the reciprocal of an entire function by series of partial fractions and exponential approximation. Sbornik. Mathematics, Tome 200 (2009) no. 3, pp. 455-469. http://geodesic.mathdoc.fr/item/SM_2009_200_3_a7/

[1] M. G. Krein, “K teorii tselykh funktsii eksponentsialnogo tipa”, Izv. AN SSSR. Ser. matem., 11:4 (1947), 309–326 | MR | Zbl

[2] M. G. Krein, “Ob odnom zamechatelnom klasse ermitovykh operatorov”, Dokl. AN SSSR, 44:5 (1944), 191–195

[3] H. L. Hamburger, “Hermitian transformations of deficiency-index $(1,1)$, Jacobi matrices and undetermined moment problems”, Amer. J. Math., 66:4 (1944), 489–522 | DOI | MR | Zbl

[4] B. Ja. Levin, Distribution of zeros of entire functions, Amer. Math. Soc., Providence, RI, 1964 | MR | MR | Zbl | Zbl

[5] A. A. Goldberg, I. V. Ostrovskii, Value distribution of meromorphic functions, Transl. Math. Monogr., 236, Amer. Math. Soc., Providence, RI, 2008 | MR | MR | Zbl | Zbl

[6] V. B. Sherstyukov, “On some criteria for completely regular growth of entire functions of exponential type”, Math. Notes, 80:1–2 (2006), 114–126 | DOI | MR | Zbl

[7] Ju. F. Korobeǐnik, “Boundary properties of analytic solutions of differential equations of infinite order”, Math. USSR-Sb., 43:3 (1982), 323–345 | DOI | MR | Zbl | Zbl

[8] L. S. Maergoǐz, “The indicator diagram of an entire function of proximate order and its generalized Borel–Laplace transforms”, St. Petersburg Math. J., 12:2 (2001), 191–232 | MR | Zbl

[9] V. B. Sherstyukov, “O razlozhenii meromorfnykh funktsii spetsialnogo vida na prosteishie drobi”, Anal. Math., 33:1 (2007), 63–81 | DOI | MR | Zbl

[10] V. B. Sherstyukov, “On a problem of Leont'ev and representing systems of exponentials”, Math. Notes, 74:1–2 (2003), 286–298 | DOI | MR | Zbl

[11] B. Ya. Levin, “Pochti periodicheskie funktsii s ogranichennym spektrom”, Aktualnye voprosy matematicheskogo analiza, Izd-vo RGU, Rostov-na-Donu, 1978, 112–124

[12] A. M. Sedletskii, Klassy analiticheskikh preobrazovanii Fure i eksponentsialnye approksimatsii, Fizmatlit, M., 2005

[13] B. N. Khabibullin, Polnota sistem eksponent i mnozhestva edinstvennosti, RITs BashGU, Ufa, 2006

[14] A. Beurling, P. Malliavin, “On Fourier transforms of measures with compact support”, Acta Math., 107:3–4 (1962), 291–309 | DOI | MR | Zbl

[15] Yu. F. Korobeinik, “Representing systems”, Russian Math. Surveys, 36:1 (1981), 75–137 | DOI | MR | Zbl

[16] A. F. Leontev, Ryady eksponent, Nauka, M., 1976 | MR | Zbl

[17] Yu. F. Korobeǐnik, “Convolution equations in the complex domain”, Math. USSR-Sb., 55:1 (1986), 171–194 | DOI | MR | Zbl | Zbl

[18] A. V. Abanin, “Geometric criteria for representation of analytic functions by series of generalized exponentials”, Russian Acad. Sci. Dokl. Math., 45:2 (1992), 407–411 | MR | Zbl