Representation of the reciprocal of an entire function by series of partial fractions and exponential approximation
Sbornik. Mathematics, Tome 200 (2009) no. 3, pp. 455-469

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions under which the reciprocal $1/L(\lambda)$ of an entire function with simple zeros $\lambda_k$ can be represented as a series of partial fractions $c_k/(\lambda-\lambda_k)$, $k=1,2,\dots$, are investigated. The possibility of such a representation is characterized, as is conventional, in terms of a particular ‘asymptotically regular’ behaviour of the function $L(\lambda)$. Applications to complete systems of exponentials on a line interval and to representative systems of exponentials in a convex domain are considered. Bibliography: 18 titles.
Keywords: entire function, series of partial fractions, representative systems of exponentials.
@article{SM_2009_200_3_a7,
     author = {V. B. Sherstyukov},
     title = {Representation of the reciprocal of an entire function by series of partial fractions and exponential approximation},
     journal = {Sbornik. Mathematics},
     pages = {455--469},
     publisher = {mathdoc},
     volume = {200},
     number = {3},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_3_a7/}
}
TY  - JOUR
AU  - V. B. Sherstyukov
TI  - Representation of the reciprocal of an entire function by series of partial fractions and exponential approximation
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 455
EP  - 469
VL  - 200
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_3_a7/
LA  - en
ID  - SM_2009_200_3_a7
ER  - 
%0 Journal Article
%A V. B. Sherstyukov
%T Representation of the reciprocal of an entire function by series of partial fractions and exponential approximation
%J Sbornik. Mathematics
%D 2009
%P 455-469
%V 200
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2009_200_3_a7/
%G en
%F SM_2009_200_3_a7
V. B. Sherstyukov. Representation of the reciprocal of an entire function by series of partial fractions and exponential approximation. Sbornik. Mathematics, Tome 200 (2009) no. 3, pp. 455-469. http://geodesic.mathdoc.fr/item/SM_2009_200_3_a7/