Mosco convergence of integral functionals and its applications
Sbornik. Mathematics, Tome 200 (2009) no. 3, pp. 429-454

Voir la notice de l'article provenant de la source Math-Net.Ru

Questions relating to the Mosco convergence of integral functionals defined on the space of square integrable functions taking values in a Hilbert space are investigated. The integrands of these functionals are time-dependent proper, convex, lower semicontinuous functions on the Hilbert space. The results obtained are applied to the analysis of the dependence on the parameter of solutions of evolution equations involving time-dependent subdifferential operators. For example a parabolic inclusion is considered, where the right-hand side contains a sum of the $p$-Laplacian and the subdifferential of the indicator function of a time-dependent closed convex set. The convergence as $p\to+\infty$ of solutions of this inclusion is investigated. Bibliography: 20 titles.
Keywords: integral functionals, $p$-Laplacian.
Mots-clés : Mosco convergence
@article{SM_2009_200_3_a6,
     author = {A. A. Tolstonogov},
     title = {Mosco convergence of integral functionals and its applications},
     journal = {Sbornik. Mathematics},
     pages = {429--454},
     publisher = {mathdoc},
     volume = {200},
     number = {3},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_3_a6/}
}
TY  - JOUR
AU  - A. A. Tolstonogov
TI  - Mosco convergence of integral functionals and its applications
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 429
EP  - 454
VL  - 200
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_3_a6/
LA  - en
ID  - SM_2009_200_3_a6
ER  - 
%0 Journal Article
%A A. A. Tolstonogov
%T Mosco convergence of integral functionals and its applications
%J Sbornik. Mathematics
%D 2009
%P 429-454
%V 200
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2009_200_3_a6/
%G en
%F SM_2009_200_3_a6
A. A. Tolstonogov. Mosco convergence of integral functionals and its applications. Sbornik. Mathematics, Tome 200 (2009) no. 3, pp. 429-454. http://geodesic.mathdoc.fr/item/SM_2009_200_3_a6/