Mosco convergence of integral functionals and its applications
Sbornik. Mathematics, Tome 200 (2009) no. 3, pp. 429-454 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Questions relating to the Mosco convergence of integral functionals defined on the space of square integrable functions taking values in a Hilbert space are investigated. The integrands of these functionals are time-dependent proper, convex, lower semicontinuous functions on the Hilbert space. The results obtained are applied to the analysis of the dependence on the parameter of solutions of evolution equations involving time-dependent subdifferential operators. For example a parabolic inclusion is considered, where the right-hand side contains a sum of the $p$-Laplacian and the subdifferential of the indicator function of a time-dependent closed convex set. The convergence as $p\to+\infty$ of solutions of this inclusion is investigated. Bibliography: 20 titles.
Keywords: integral functionals, $p$-Laplacian.
Mots-clés : Mosco convergence
@article{SM_2009_200_3_a6,
     author = {A. A. Tolstonogov},
     title = {Mosco convergence of integral functionals and its applications},
     journal = {Sbornik. Mathematics},
     pages = {429--454},
     year = {2009},
     volume = {200},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_3_a6/}
}
TY  - JOUR
AU  - A. A. Tolstonogov
TI  - Mosco convergence of integral functionals and its applications
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 429
EP  - 454
VL  - 200
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_3_a6/
LA  - en
ID  - SM_2009_200_3_a6
ER  - 
%0 Journal Article
%A A. A. Tolstonogov
%T Mosco convergence of integral functionals and its applications
%J Sbornik. Mathematics
%D 2009
%P 429-454
%V 200
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2009_200_3_a6/
%G en
%F SM_2009_200_3_a6
A. A. Tolstonogov. Mosco convergence of integral functionals and its applications. Sbornik. Mathematics, Tome 200 (2009) no. 3, pp. 429-454. http://geodesic.mathdoc.fr/item/SM_2009_200_3_a6/

[1] H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland, Amsterdam–London; Elsevier, New York, 1973 | MR | Zbl

[2] H. Attouch, Variational convergence for functions and operators, Appl. Math. Ser., Pitman, Boston–London–Melbourne, 1984 | MR | Zbl

[3] G. Aronsson, L. C. Evans, Y. Wu, “Fast/slow diffusion and growing sandpiles”, J. Differential Equations, 131:2 (1996), 304–335 | DOI | MR | Zbl

[4] J. W. Barrett, L. Prigozhin, “Bean's critical-state model as the $p\to\infty$ limit of an evolutionary $p$-Laplacian equation”, Nonlinear Anal., 42:2 (2000), 977–993 | DOI | MR | Zbl

[5] H.-M. Yin, “On a $p$-Laplacian type of evolution system and applications to the Bean model in the type-II superconductivity theory”, Quart. Appl. Math., 59:1 (2001), 47–66 | MR | Zbl

[6] G. Akagi, “Convergence of functionals and its applications to parabolic equations”, Abstr. Appl. Anal., 11 (2004), 907–933 | DOI | MR | Zbl

[7] G. Akagi, M. Otani, “Time-dependent constraint problems arising from macroscopic critical-state models for type-II superconductivity and their approximations”, Adv. Math. Sci. Appl., 14:2 (2004), 683–712 | MR | Zbl

[8] P. Krejčí, J. Sprekels, “Parabolic regularization of differential inclusions and the stop operator”, Interfaces Free Bound., 4:4 (2004), 423–435 | MR | Zbl

[9] N. Kenmochi, “Solvability of nonlinear evolution equations with time-dependent constraints and applications”, Bull. Fac. Educ., Chiba Univ., 2, 30 (1981), 1–87 | Zbl

[10] N. Bourbaki, Éléments de mathématique. XIX. Part 1: Les structures fondamentales de l'analyse. Livre V: Espaces vectoriels topologiques, Hermann, Paris, 1955 | MR | Zbl

[11] E. Michael, “Continuous Selections. I”, Ann. of Math. (2), 63:2 (1956), 361–382 | DOI | MR | Zbl

[12] R. E. Edwards, Functional analysis. Theory and applications, Holt, Rinehart and Winston, New York–Toronto–London, 1965 | MR | Zbl | Zbl

[13] N. Kenmochi, “On the quasi-linear heat equation with time-dependent obstacles”, Nonlinear Anal., 5:1 (1981), 71–80 | DOI | MR | Zbl

[14] A. A. Tolstonogov, D. A. Tolstonogov, “$L_p$-continuous extreme selectors of multifunctions with decomposable values: existence theorems”, Set-Valued Anal., 4:2 (1996), 173–203 | DOI | MR | Zbl

[15] M. Kisielewicz, “Weak compactness in spaces $C(S,X)$”, Information theory, statistical decision functions, random processes, Trans. 11th Prague Conf. (Prague, 1990), Kluwer Acad. Publ., Dordrecht, 1992, 101–106 | Zbl

[16] H. Gajewski, K. Gröger, K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974 | MR | MR | Zbl

[17] F. Hiai, H. Umegaki, “Integrals, conditional expectations, and martingales of multivalued functions”, J. Multivariate Anal., 7:1 (1977), 149–182 | DOI | MR | Zbl

[18] O. V. Besov, V. P. Il'in, S. M. Nikol'skiĭ, Integral representations of functions and imbedding theorems, vol. I, II, Winston, Washington, DC; Wiley, New York–Toronto, ON–London, 1979 | MR | MR | Zbl | Zbl

[19] V. Barbu, Optimal control of variational inequalities, Res. Notes in Math., 100, Pitman, Boston–London–Melbourne, 1984 | MR | Zbl

[20] V. Barbu, Nonlinear semigroups and differential equations in Banach spaces, Noordhoff, Leyden, 1976 | MR | Zbl