Mots-clés : Mosco convergence
@article{SM_2009_200_3_a6,
author = {A. A. Tolstonogov},
title = {Mosco convergence of integral functionals and its applications},
journal = {Sbornik. Mathematics},
pages = {429--454},
year = {2009},
volume = {200},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2009_200_3_a6/}
}
A. A. Tolstonogov. Mosco convergence of integral functionals and its applications. Sbornik. Mathematics, Tome 200 (2009) no. 3, pp. 429-454. http://geodesic.mathdoc.fr/item/SM_2009_200_3_a6/
[1] H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland, Amsterdam–London; Elsevier, New York, 1973 | MR | Zbl
[2] H. Attouch, Variational convergence for functions and operators, Appl. Math. Ser., Pitman, Boston–London–Melbourne, 1984 | MR | Zbl
[3] G. Aronsson, L. C. Evans, Y. Wu, “Fast/slow diffusion and growing sandpiles”, J. Differential Equations, 131:2 (1996), 304–335 | DOI | MR | Zbl
[4] J. W. Barrett, L. Prigozhin, “Bean's critical-state model as the $p\to\infty$ limit of an evolutionary $p$-Laplacian equation”, Nonlinear Anal., 42:2 (2000), 977–993 | DOI | MR | Zbl
[5] H.-M. Yin, “On a $p$-Laplacian type of evolution system and applications to the Bean model in the type-II superconductivity theory”, Quart. Appl. Math., 59:1 (2001), 47–66 | MR | Zbl
[6] G. Akagi, “Convergence of functionals and its applications to parabolic equations”, Abstr. Appl. Anal., 11 (2004), 907–933 | DOI | MR | Zbl
[7] G. Akagi, M. Otani, “Time-dependent constraint problems arising from macroscopic critical-state models for type-II superconductivity and their approximations”, Adv. Math. Sci. Appl., 14:2 (2004), 683–712 | MR | Zbl
[8] P. Krejčí, J. Sprekels, “Parabolic regularization of differential inclusions and the stop operator”, Interfaces Free Bound., 4:4 (2004), 423–435 | MR | Zbl
[9] N. Kenmochi, “Solvability of nonlinear evolution equations with time-dependent constraints and applications”, Bull. Fac. Educ., Chiba Univ., 2, 30 (1981), 1–87 | Zbl
[10] N. Bourbaki, Éléments de mathématique. XIX. Part 1: Les structures fondamentales de l'analyse. Livre V: Espaces vectoriels topologiques, Hermann, Paris, 1955 | MR | Zbl
[11] E. Michael, “Continuous Selections. I”, Ann. of Math. (2), 63:2 (1956), 361–382 | DOI | MR | Zbl
[12] R. E. Edwards, Functional analysis. Theory and applications, Holt, Rinehart and Winston, New York–Toronto–London, 1965 | MR | Zbl | Zbl
[13] N. Kenmochi, “On the quasi-linear heat equation with time-dependent obstacles”, Nonlinear Anal., 5:1 (1981), 71–80 | DOI | MR | Zbl
[14] A. A. Tolstonogov, D. A. Tolstonogov, “$L_p$-continuous extreme selectors of multifunctions with decomposable values: existence theorems”, Set-Valued Anal., 4:2 (1996), 173–203 | DOI | MR | Zbl
[15] M. Kisielewicz, “Weak compactness in spaces $C(S,X)$”, Information theory, statistical decision functions, random processes, Trans. 11th Prague Conf. (Prague, 1990), Kluwer Acad. Publ., Dordrecht, 1992, 101–106 | Zbl
[16] H. Gajewski, K. Gröger, K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974 | MR | MR | Zbl
[17] F. Hiai, H. Umegaki, “Integrals, conditional expectations, and martingales of multivalued functions”, J. Multivariate Anal., 7:1 (1977), 149–182 | DOI | MR | Zbl
[18] O. V. Besov, V. P. Il'in, S. M. Nikol'skiĭ, Integral representations of functions and imbedding theorems, vol. I, II, Winston, Washington, DC; Wiley, New York–Toronto, ON–London, 1979 | MR | MR | Zbl | Zbl
[19] V. Barbu, Optimal control of variational inequalities, Res. Notes in Math., 100, Pitman, Boston–London–Melbourne, 1984 | MR | Zbl
[20] V. Barbu, Nonlinear semigroups and differential equations in Banach spaces, Noordhoff, Leyden, 1976 | MR | Zbl