On the new compactification of moduli of vector bundles on a~surface.~II
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 200 (2009) no. 3, pp. 405-427
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We construct a new compactification of the moduli scheme of Gieseker-stable vector bundles having fixed Hilbert polynomial on a smooth projective polarized surface $(S,H)$ defined over the field $k=\mathbb C$. Families of locally free sheaves on the surface $S$ are completed by locally free sheaves
on surfaces that are certain modifications of $S$. The new moduli space has a birational morphism onto the Gieseker-Maruyama moduli space. We consider the case when the Gieseker-Maruyama
space is the coarse moduli space.
Bibliography: 16 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
semistable coherent sheaves, pseudofamily
Mots-clés : moduli space, algebraic surface.
                    
                  
                
                
                Mots-clés : moduli space, algebraic surface.
@article{SM_2009_200_3_a5,
     author = {N. V. Timofeeva},
     title = {On the new compactification of moduli of vector bundles on {a~surface.~II}},
     journal = {Sbornik. Mathematics},
     pages = {405--427},
     publisher = {mathdoc},
     volume = {200},
     number = {3},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_3_a5/}
}
                      
                      
                    N. V. Timofeeva. On the new compactification of moduli of vector bundles on a~surface.~II. Sbornik. Mathematics, Tome 200 (2009) no. 3, pp. 405-427. http://geodesic.mathdoc.fr/item/SM_2009_200_3_a5/
