On the new compactification of moduli of vector bundles on a~surface.~II
Sbornik. Mathematics, Tome 200 (2009) no. 3, pp. 405-427

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a new compactification of the moduli scheme of Gieseker-stable vector bundles having fixed Hilbert polynomial on a smooth projective polarized surface $(S,H)$ defined over the field $k=\mathbb C$. Families of locally free sheaves on the surface $S$ are completed by locally free sheaves on surfaces that are certain modifications of $S$. The new moduli space has a birational morphism onto the Gieseker-Maruyama moduli space. We consider the case when the Gieseker-Maruyama space is the coarse moduli space. Bibliography: 16 titles.
Keywords: semistable coherent sheaves, pseudofamily
Mots-clés : moduli space, algebraic surface.
@article{SM_2009_200_3_a5,
     author = {N. V. Timofeeva},
     title = {On the new compactification of moduli of vector bundles on {a~surface.~II}},
     journal = {Sbornik. Mathematics},
     pages = {405--427},
     publisher = {mathdoc},
     volume = {200},
     number = {3},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_3_a5/}
}
TY  - JOUR
AU  - N. V. Timofeeva
TI  - On the new compactification of moduli of vector bundles on a~surface.~II
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 405
EP  - 427
VL  - 200
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_3_a5/
LA  - en
ID  - SM_2009_200_3_a5
ER  - 
%0 Journal Article
%A N. V. Timofeeva
%T On the new compactification of moduli of vector bundles on a~surface.~II
%J Sbornik. Mathematics
%D 2009
%P 405-427
%V 200
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2009_200_3_a5/
%G en
%F SM_2009_200_3_a5
N. V. Timofeeva. On the new compactification of moduli of vector bundles on a~surface.~II. Sbornik. Mathematics, Tome 200 (2009) no. 3, pp. 405-427. http://geodesic.mathdoc.fr/item/SM_2009_200_3_a5/