Geodesics on 2-surfaces with pseudo-Riemannian metric: singularities of changes of signature
Sbornik. Mathematics, Tome 200 (2009) no. 3, pp. 385-403 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Smooth 2-surfaces with pseudo-Riemannian metric are considered, that is, ones with quadratic form in the tangent bundle that is not positive-definite. Degeneracy points of the form are said to be parabolic. Geodesic lines induced by this pseudo-Riemannian metric in a neighbourhood of typical parabolic points are considered, their phase portraits are obtained and extremal properties are investigated. Bibliography: 23 titles.
Keywords: pseudo-Riemannian metric, geodesic lines, singular points, resonances, normal forms.
@article{SM_2009_200_3_a4,
     author = {A. O. Remizov},
     title = {Geodesics on 2-surfaces with {pseudo-Riemannian} metric: singularities of changes of signature},
     journal = {Sbornik. Mathematics},
     pages = {385--403},
     year = {2009},
     volume = {200},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_3_a4/}
}
TY  - JOUR
AU  - A. O. Remizov
TI  - Geodesics on 2-surfaces with pseudo-Riemannian metric: singularities of changes of signature
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 385
EP  - 403
VL  - 200
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_3_a4/
LA  - en
ID  - SM_2009_200_3_a4
ER  - 
%0 Journal Article
%A A. O. Remizov
%T Geodesics on 2-surfaces with pseudo-Riemannian metric: singularities of changes of signature
%J Sbornik. Mathematics
%D 2009
%P 385-403
%V 200
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2009_200_3_a4/
%G en
%F SM_2009_200_3_a4
A. O. Remizov. Geodesics on 2-surfaces with pseudo-Riemannian metric: singularities of changes of signature. Sbornik. Mathematics, Tome 200 (2009) no. 3, pp. 385-403. http://geodesic.mathdoc.fr/item/SM_2009_200_3_a4/

[1] A. D. Sakharov, “Kosmologicheskie perekhody s izmeneniem signatury metriki”, ZhETF, 87:2(8) (1984), 375–383

[2] B. L. Altshuler, A. O. Barvinskii, “Kvantovaya kosmologiya i fizika perekhodov s izmeneniem signatury prostranstva-vremeni”, UFN, 166:5 (1996), 459–478 | DOI

[3] T. Dereli, R. W. Tucker, “Signature dynamics in general relativity”, Classical Quantum Gravity, 10:2 (1993), 365–373 | DOI | MR | Zbl

[4] G. Ellis, A. Sumeruk, D. Coule, C. Hellaby, “Change of signature in classical relativity”, Classical Quantum Gravity, 9:6 (1992), 1535–1554 | DOI | MR | Zbl

[5] S. A. Hayward, “Signature change in general relativity”, Classical Quantum Gravity, 9:8 (1992), 1851–1862 | DOI | MR

[6] M. Kossowski, “Pseudo-Riemannian metric singularities and the extendability of parallel transport”, Proc. Amer. Math. Soc., 99:1 (1987), 147–154 | DOI | MR | Zbl

[7] M. Kossowski, M. Kriele, “Signature type change and absolute time in general relativity”, Classical Quantum Gravity, 10:6 (1993), 1157–1164 | DOI | MR | Zbl

[8] M. Kossowski, M. Kriele, “Transverse, type changing, pseudo Riemannian metrics and the extendability of geodesics”, Proc. Roy. Soc. London Ser. A, 444:1921 (1994), 297–306 | DOI | MR | Zbl

[9] M. Kossowski, M. Kriele, “The Einstein equation for signature type changing spacetimes”, Proc. Roy. Soc. London Ser. A, 446:1926 (1994), 115–126 | DOI | MR | Zbl

[10] A. A. Davydov, M. A. Komarov, “Local controllability bifurcations in families of bidynamical systems on the plane”, Proc. Steklov Inst. Math., 261:1 (2008), 84–93 | DOI

[11] A. O. Remizov, “Codimension-two singularities in 3D affine control systems with a scalar control”, Sb. Math., 199:4 (2008), 613–627 | DOI | MR | Zbl

[12] V. Arnol'd, Chapitres supplémentaires de la théorie des équations différentielles ordinaires, Mir, Moscow, 1980 | MR | MR | Zbl | Zbl

[13] V. I. Arnold, Geometricheskie metody v teorii obyknovennykh differentsialnykh uravnenii, Izd-vo Udmurtskogo un-ta, Izhevsk, 2000

[14] V. I. Arnol'd, Yu. S. Il'yashenko, “Ordinary differential equations”, Dynamical systems I, Encyclopaedia Math. Sci., 1, Springer-Verlag, Berlin, 1988, 7–140 | MR | MR | Zbl | Zbl

[15] A. A. Davydov, “Normal form of a differential equation, not solvable for the derivative, in a neighborhood of a singular point”, Functional Anal. Appl., 19:2 (1985), 81–89 | DOI | MR | Zbl

[16] A. O. Remizov, “Multidimensional Poincaré construction and singularities of lifted fields for implicit differential equations”, J. Math. Sci. (N. Y.), 151:6 (2008), 3561–3602 | DOI | MR | Zbl

[17] R. Roussarie, “Modèles locaux de champs et de formes”, Astérisque, 30 (1975), 1–181 | MR | Zbl

[18] A. D. Bruno, Local methods in nonlinear differential equations, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1989 | MR | MR | Zbl | Zbl

[19] V. V. Nemytskii, V. V. Stepanov, Qualitative theory of differential equations, Princeton Univ. Press, Princeton, NJ, 1960 | MR | MR | Zbl | Zbl

[20] S. M. Voronin, “The Darboux–Whitney theorem and related questions”, Nonlinear Stokes phenomena, Adv. Soviet Math., 14, Amer. Math. Soc., Providence, RI, 1993, 139–233 | MR | Zbl

[21] S. M. Voronin, “Analiticheskaya klassifikatsiya rostkov golomorfnykh otobrazhenii s neizolirovannymi nepodvizhnymi tochkami i postoyannymi multiplikatorami i ee prilozheniya”, Vestnik ChelGU. Ser. 3. Matem., mekh., 2(5):3 (1999), 12–30 | MR

[22] A. Mishchenko, A. Fomenko, A course of differential geometry and topology, Mir, Moscow, 1988 | MR | MR | Zbl

[23] M. I. Zelikin, Optimalnoe upravlenie i variatsionnoe ischislenie, URSS, M., 2004 | Zbl