@article{SM_2009_200_3_a3,
author = {T. A. Mel'nik and G. A. Chechkin},
title = {Asymptotic analysis of boundary-value problems in thick three-dimensional multi-level junctions},
journal = {Sbornik. Mathematics},
pages = {357--383},
year = {2009},
volume = {200},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2009_200_3_a3/}
}
TY - JOUR AU - T. A. Mel'nik AU - G. A. Chechkin TI - Asymptotic analysis of boundary-value problems in thick three-dimensional multi-level junctions JO - Sbornik. Mathematics PY - 2009 SP - 357 EP - 383 VL - 200 IS - 3 UR - http://geodesic.mathdoc.fr/item/SM_2009_200_3_a3/ LA - en ID - SM_2009_200_3_a3 ER -
T. A. Mel'nik; G. A. Chechkin. Asymptotic analysis of boundary-value problems in thick three-dimensional multi-level junctions. Sbornik. Mathematics, Tome 200 (2009) no. 3, pp. 357-383. http://geodesic.mathdoc.fr/item/SM_2009_200_3_a3/
[1] V. A. Marchenko, E. Ya. Khruslov, Kraevye zadachi v oblastyakh s melkozernistoi granitsei, Naukova dumka, Kiev, 1974 | MR | Zbl
[2] A. Bensoussan, J.-L. Lions, G. Papanicolaou, Asymptotic analysis for periodic structures, Stud. Math. Appl., 5, North-Holland, Amsterdam–New York–Oxford, 1978 | MR | Zbl
[3] N. S. Bakhvalov, G. Panasenko, Homogenisation: averaging processes in periodic media. Mathematical problems in the mechanics of composite materials, Math. Appl. (Soviet Ser.), 36, Kluwer Acad. Publ., Dordrecht, 1989 | MR | MR | Zbl | Zbl
[4] V. V. Jikov, S. M. Kozlov, O. A. Oleĭnik, Homogenization of differential operators and integral functionals, Springer-Verlag, Berlin, 1994 | MR | MR | Zbl | Zbl
[5] D. Cioranescu, J. Saint Jean Paulin, Homogenization of reticulated structures, Appl. Math. Sci., 136, Springer-Verlag, Berlin–New York, 1999 | MR | Zbl
[6] S. A. Nazarov, Asimptoticheskaya teoriya tonkikh plastin i sterzhnei, Nauchnaya kniga, Novosibirsk, 2002
[7] G. A. Chechkin, A. L. Piatnitski, A. S. Shamaev, Homogenization. Methods and applications, Transl. Math. Monogr., 234, Amer. Math. Soc., Providence, RI, 2007 | MR | Zbl
[8] D. Blanchard, A. Gaudiello, T. A. Mel'nyk, “Boundary homogenization and reduction of dimension in a Kirchhoff–Love plate”, SIAM J. Math. Anal., 39:6 (2008), 1764–1787 | DOI | MR | Zbl
[9] U. De Maio, T. Durante, T. A. Mel'nyk, “Asymptotic approximation for the solution to the Robin problem in a thick multi-level junction”, Math. Models Methods Appl. Sci., 15:12 (2005), 1897–1921 | DOI | MR | Zbl
[10] F. Fleury, E. Sánchez-Palencia, “Asymptotics and spectral properties of the acoustic vibrations of a body perforated by narrow channels”, Bull. Sci. Math. (2), 110:2 (1986), 149–176 | MR | Zbl
[11] T. A. Mel'nik, S. A. Nazarov, “The asymptotic structure of the spectrum in the problem of harmonic oscillations of a hub with heavy spokes”, Russian Acad. Sci. Dokl. Math., 48:3 (1994), 428–432 | MR | Zbl
[12] T. A. Mel'nik, S. A. Nazarov, “The asymptotics of the solution to the Neumann spectral problem in a domain of the “dense-comb” type”, J. Math. Sci. (New York), 85:6 (1997), 2326–2346 | DOI | MR | Zbl
[13] T. A. Mel'nyk, “Homogenization of the Poisson equation in a thick periodic junction”, Z. Anal. Anwendungen, 18:4 (1999), 953–975 | MR | Zbl
[14] T. A. Mel'nik, S. A. Nazarov, “Asymptotic analysis of the Neumann problem on the junction of a body and thin heavy rods”, St. Petersburg Math. J., 12:2 (2001), 317–351 | MR | Zbl
[15] T. A. Mel'nik, “Homogenization of a singularly perturbed parabolic problem in a thick periodic junction of the type 3:2:1”, Ukr. matem. zhurn., 52:11 (2000), 1524–1533 | MR | Zbl
[16] T. A. Mel'nyk, “Asymptotic behavior of eigenvalues and eigenfunctions of the Fourier problem in a thick multilevel junction”, Ukr. matem. zhurn., 58:2 (2006), 195–216 | MR | Zbl
[17] T. A. Mel'nyk, P. S. Vashchuk, “Homogenization of the Neumann–Fourier problem in a thick two-level junction of type 3:2:1.”, Zh. Mat. Fiz. Anal. Geom., 2:3 (2006), 318–337 | MR | Zbl
[18] T. A. Mel'nyk, P. S. Vashchuk, “Homogenization of a boundary value problem with mixed type of boundary conditions in a thick junction”, Differ. Equ., 43:5 (2007), 696–703 | DOI | MR | Zbl
[19] T. A. Mel'nyk, “Homogenization of a boundary-value problem with a nonlinear boundary condition in a thick junction of type 3:2:1”, Math. Methods Appl. Sci., 31:9 (2008), 1005–1027 | DOI | MR | Zbl
[20] S. A. Nazarov, “Soedineniya singulyarno vyrozhdayuschikhsya oblastei razlichnykh predelnykh razmernostei. I”, Tr. sem. im. I. G. Petrovskogo, 18, Izd-vo Mosk. un-ta, M., 1995, 3–78 ; “Соединения сингулярно вырождающихся областей различных предельных размерностей. II”, 20, 1997, 155–195 ; S. A. Nazarov, “Junctions of singularly degenerating domains with different limit dimensions. I”, J. Math. Sci., 80:5 (1996), 1989–2034 ; “Junctions of singularly degenerating domains with different limit dimensions. II.”, J. Math. Sci. (New York), 97:3 (1999), 4085–4108 | MR | Zbl | MR | Zbl | DOI | DOI
[21] E. Ya. Khruslov, “O rezonansnykh yavleniyakh v odnoi zadache difraktsii”, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, vyp. 6, Izd-vo Khark. un-ta, Kharkov, 1968, 111–129
[22] Y. Amirat, G. A. Chechkin, R. R. Gadyl'shin, “Asymptotics of simple eigenvalues and eigenfunctions for the Laplace operator in a domain with an oscillating boundary”, ZhVM i MF, 46:1 (2006), 102–115 | MR | Zbl
[23] Y. Amirat, G. A. Chechkin, R. R. Gadyl'shin, “Asymptotics for eigenelements of Laplacian in domain with oscillating boundary: multiple eigenvalues”, Appl. Anal., 86:7 (2007), 873–897 | DOI | MR | Zbl
[24] A. G. Belyaev, O singulyarnykh vozmuscheniyakh granichnykh zadach, Dis. ... kand. fiz.-matem. nauk, MGU, M., 1990
[25] A. G. Belyaev, A. L. Pyatnitskiǐ, G. A. Chechkin, “Asymptotic behavior of a solution to a boundary value problem in a perforated domain with oscillating boundary”, Siberian Math. J., 39:4 (1998), 621–644 | DOI | MR | Zbl
[26] G. Bouchitté, A. Lidouh, P. Suquet, “Homogénéisation de frontière pour la modélisation du contact entre un corps déformable non lineaire et un corps rigide”, C. R. Acad. Sci. Paris Sér. I Math., 313:13 (1991), 967–972 | MR | Zbl
[27] G. Chechkin, D. Cioranescu, “Vibration of a thin plate with a “rough” surface”, Nonlinear partial differential equations and their applications, Collège de France Seminar, Vol. XIV (Paris, 1997–1998), Stud. Math. Appl., 31, North-Holland, Amsterdam, 2002, 147–169 | DOI | MR | Zbl
[28] G. A. Chechkin, A. Friedman, A. L. Piatnitski, “The boundary-value problem in domains with very rapidly oscillating boundary”, J. Math. Anal. Appl., 231:1 (1999), 213–234 | DOI | MR | Zbl
[29] E. N. Dancer, D. Daners, “Domain perturbation for elliptic equations subject to robin boundary conditions”, J. Differential Equations, 138:1 (1997), 86–132 | DOI | MR | Zbl
[30] A. Gaudiello, “Asymptotic behaviour of non-homogeneous Neumann problems in domains with oscillating boundary”, Ricerche Mat., 43:2 (1994), 239–292 | MR | Zbl
[31] W. Jäger, A. Mikelić, “On the roughness-induced effective boundary conditions for an incompressible viscous flow”, J. Differential Equations, 170:1 (2001), 96–122 | DOI | MR | Zbl
[32] W. Jäger, A. Mikelić, “Couette flows over a rough boundary and drag reduction”, Comm. Math. Phys., 232:3 (2003), 429–455 | DOI | MR | Zbl
[33] W. Kohler, G. Papanicolaou, S. Varadhan, “Boundary and interface problems in regions with very rough boundaries”, Multiple scattering and waves in random media, Proceedings of the U.S. Army Workshop (Blacksburg, VA, 1980), North-Holland, Amsterdam–New York–Oxford, 1981, 165–197 | MR | Zbl
[34] J. Nevard, J. B. Keller, “Homogenization of rough boundaries and interfaces”, SIAM J. Appl. Math., 57:6 (1997), 1660–1686 | DOI | MR | Zbl
[35] T. A. Melnik, “Userednenie ellipticheskikh uravnenii, opisyvayuschikh protsessy v silno neodnorodnykh tonkikh perforirovannykh oblastyakh s bystro izmenyayuscheisya tolschinoi”, Dokl. AN Ukrainy, 10 (1991), 15–18 | MR
[36] G. A. Chechkin, T. P. Chechkina, “On homogenization of problems in domains of the “infusorium” type”, J. Math. Sci. (New York), 120:3 (2004), 1470–1482 | DOI | MR | Zbl
[37] G. A. Chechkin, T. P. Chechkina, “Homogenization theorem for problems in domains of the “infusorian” type with uncoordinated structure”, J. Math. Sci. (N. Y.), 123:5 (2004), 4363–4380 | DOI | MR | Zbl
[38] T. A. Melnik, G. A. Chechkin, “Asimptoticheskii analiz kraevykh zadach v gustykh kaskadnykh soedineniyakh”, Dokl. NAN Ukrainy, 9 (2008), 16–22
[39] O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, Appl. Math. Sci., 49, Springer–Verlag, New York, 1985 | MR | MR | Zbl | Zbl
[40] Z. Denkowski, S. Mortola, “Asymptotic behavior of optimal solutions to control problems for systems described by differential inclusions corresponding to partial differential equations to partial differential equations”, J. Optim. Theory Appl., 78:2 (1993), 365–391 | DOI | MR | Zbl
[41] S. L. Sobolev, Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 ; S. L. Sobolev, Some applications of functional analysis in mathematical physics, Transl. Math. Monogr., 90, Amer. Math. Soc., Providence, RI, 1991 | MR | Zbl | MR | Zbl
[42] S. L. Sobolev, Izbrannye voprosy teorii funktsionalnykh prostranstv i obobschennykh funktsii, Nauka, M., 1989 | MR | Zbl