Functional models for commutative systems of linear operators and de Branges spaces on a Riemann surface
Sbornik. Mathematics, Tome 200 (2009) no. 3, pp. 339-356 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Functional models are constructed for commutative systems $\{A_1,A_2\}$ of bounded linear non-self-adjoint operators which do not contain dissipative operators (which means that $\xi_1A_1+\xi_2A_2$ is not a dissipative operator for any $\xi_1$, $\xi_2\in\mathbb{R}$). A significant role is played here by the de Branges transform and the function classes occurring in this context. Classes of commutative systems of operators $\{A_1,A_2\}$ for which such a construction is possible are distinguished. Realizations of functional models in special spaces of meromorphic functions on Riemann surfaces are found, which lead to reasonable analogues of de Branges spaces on these Riemann surfaces. It turns out that the functions $E(p)$ and $\widetilde E(p)$ determining the order of growth in de Branges spaces on Riemann surfaces coincide with the well-known Baker-Akhiezer functions. Bibliography: 11 titles.
Keywords: functional model, commutative system, de Branges space.
@article{SM_2009_200_3_a2,
     author = {V. A. Zolotarev},
     title = {Functional models for commutative systems of linear operators and de {Branges} spaces on {a~Riemann} surface},
     journal = {Sbornik. Mathematics},
     pages = {339--356},
     year = {2009},
     volume = {200},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_3_a2/}
}
TY  - JOUR
AU  - V. A. Zolotarev
TI  - Functional models for commutative systems of linear operators and de Branges spaces on a Riemann surface
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 339
EP  - 356
VL  - 200
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_3_a2/
LA  - en
ID  - SM_2009_200_3_a2
ER  - 
%0 Journal Article
%A V. A. Zolotarev
%T Functional models for commutative systems of linear operators and de Branges spaces on a Riemann surface
%J Sbornik. Mathematics
%D 2009
%P 339-356
%V 200
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2009_200_3_a2/
%G en
%F SM_2009_200_3_a2
V. A. Zolotarev. Functional models for commutative systems of linear operators and de Branges spaces on a Riemann surface. Sbornik. Mathematics, Tome 200 (2009) no. 3, pp. 339-356. http://geodesic.mathdoc.fr/item/SM_2009_200_3_a2/

[1] V. A. Zolotarev, Analiticheskie metody spektralnykh predstavlenii nesamosopryazhennykh i neunitarnykh operatorov, Mag Press, KhNU, Kharkov, 2003

[2] L. de Branges, Hilbert spaces of entire functions, Prentice-Hall, Englewood Cliffs, NJ, 1968 | MR | Zbl

[3] M. S. Livšic, N. Kravitsky, A. S. Markus, V. Vinnikov, Theory of commuting nonselfadjoint operators, Math. Appl., 332, Kluwer Acad. Publ., Dordrecht, 1995 | MR | Zbl

[4] V. A. Zolotarev, “Time cones and a functional model on a Riemann surface”, Math. USSR-Sb., 70:2 (1991), 399–429 | DOI | MR | Zbl

[5] B. S. Pavlov, S. I. Fedorov, “The group of shifts and harmonic analysis on a Riemann surface of genus one”, Leningrad Math. J., 1:2 (1990), 447–490 | MR | Zbl | Zbl

[6] B. A. Dubrovin, “Theta functions and non-linear equations”, Russian Math. Surveys, 36:2 (1981), 11–92 | DOI | MR | Zbl | Zbl

[7] D. Alpay, V. Vinnikov, “Analogues d'espaces de Branges sur des surfaces de Riemann”, C. R. Acad. Sci. Paris Sér. I Math., 318:12 (1994), 1077–1082 | MR | Zbl

[8] D. Alpay, V. Vinnikov, “Finite dimensional de branges spaces on Riemann surfaces”, J. Funct. Anal., 189:2 (2002), 283–324 | DOI | MR | Zbl

[9] M. S. Livshits, A. A. Yantsevich, Operator colligations in Hilbert spaces, Winston Sons, Washington, DC; A Halsted Press Book, Wiley, New York–Toronto, ON–London, 1979 | MR | MR | Zbl | Zbl

[10] G. Springer, Introduction to Riemann surfaces, Addison-Wesley, Reading, MA, 1957 | MR | MR | Zbl | Zbl

[11] N. I. Akhiezer, Elements of the theory of elliptic functions, Transl. Math. Monogr., 79, Amer. Math. Soc., Providence, RI, 1990 | MR | MR | Zbl | Zbl