Functional models for commutative systems of linear operators and de Branges spaces on a~Riemann surface
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 200 (2009) no. 3, pp. 339-356
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Functional models are constructed for commutative systems  $\{A_1,A_2\}$ of bounded linear non-self-adjoint
operators which do not contain dissipative operators (which means that $\xi_1A_1+\xi_2A_2$ is not a dissipative operator for any $\xi_1$, $\xi_2\in\mathbb{R}$). A significant role is played here by the de Branges transform and the function classes occurring in this context. Classes of commutative systems
of operators $\{A_1,A_2\}$ for which such a construction is possible are distinguished. Realizations of functional models in special spaces of meromorphic functions on Riemann surfaces are found,
which lead to reasonable analogues of de Branges spaces on these Riemann surfaces.
It turns out that the functions $E(p)$ and $\widetilde E(p)$ determining the order of
growth in de Branges spaces on Riemann surfaces coincide with the well-known Baker-Akhiezer functions.
Bibliography: 11 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
functional model, commutative system, de Branges space.
                    
                    
                    
                  
                
                
                @article{SM_2009_200_3_a2,
     author = {V. A. Zolotarev},
     title = {Functional models for commutative systems of linear operators and de {Branges} spaces on {a~Riemann} surface},
     journal = {Sbornik. Mathematics},
     pages = {339--356},
     publisher = {mathdoc},
     volume = {200},
     number = {3},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_3_a2/}
}
                      
                      
                    TY - JOUR AU - V. A. Zolotarev TI - Functional models for commutative systems of linear operators and de Branges spaces on a~Riemann surface JO - Sbornik. Mathematics PY - 2009 SP - 339 EP - 356 VL - 200 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2009_200_3_a2/ LA - en ID - SM_2009_200_3_a2 ER -
V. A. Zolotarev. Functional models for commutative systems of linear operators and de Branges spaces on a~Riemann surface. Sbornik. Mathematics, Tome 200 (2009) no. 3, pp. 339-356. http://geodesic.mathdoc.fr/item/SM_2009_200_3_a2/
