On the continuous part of codimension 2 algebraic
Sbornik. Mathematics, Tome 200 (2009) no. 3, pp. 325-338 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $X$ be a nonsingular projective threefold over an algebraically closed field and let $A^2(X)$ be the group of algebraically trivial codimension 2 algebraic cycles on $X$ modulo rational equivalence with coefficients in $\mathbb Q$. Assume that $X$ is birationally equivalent to a threefold $X'$ fibered over an integral curve $C$ with generic fiber $X_{\bar \eta }$ satisfying the following three conditions: the motive $M(X'_{\bar \eta })$ is finite-dimensional; $H^1_{\mathrm{et}}(X_{\bar\eta},{\mathbb Q}_l)=\nobreak0$; $H^2_{\mathrm{et}}(X_{\bar \eta },{\mathbb Q} _l(1))$ is spanned by divisors on $X_{\bar \eta }$. We prove that under these three assumptions the group $A^2(X)$ is weakly representable: there exist a curve $Y$ and a correspondence $z$ on $Y\times X$ such that $z$ induces an epimorphism $A^1(Y)\to A^2(X)$, where $A^1(Y)$ is isomorphic to ${\mathrm{Pic}}^0(Y)$ tensored with $\mathbb Q$. In particular, this result holds for threefolds birationally equivalent to three-dimensional del Pezzo fibrations over a curve. Bibliography: 12 titles.
Keywords: threefolds, spreads.
Mots-clés : algebraic cycles, motives
@article{SM_2009_200_3_a1,
     author = {V. I. Guletskii},
     title = {On the continuous part of codimension~2 algebraic},
     journal = {Sbornik. Mathematics},
     pages = {325--338},
     year = {2009},
     volume = {200},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_3_a1/}
}
TY  - JOUR
AU  - V. I. Guletskii
TI  - On the continuous part of codimension 2 algebraic
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 325
EP  - 338
VL  - 200
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_3_a1/
LA  - en
ID  - SM_2009_200_3_a1
ER  - 
%0 Journal Article
%A V. I. Guletskii
%T On the continuous part of codimension 2 algebraic
%J Sbornik. Mathematics
%D 2009
%P 325-338
%V 200
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2009_200_3_a1/
%G en
%F SM_2009_200_3_a1
V. I. Guletskii. On the continuous part of codimension 2 algebraic. Sbornik. Mathematics, Tome 200 (2009) no. 3, pp. 325-338. http://geodesic.mathdoc.fr/item/SM_2009_200_3_a1/

[1] S. Bloch, “An example in the theory of algebraic cycles”, Algebraic $K$-theory (Northwestern Univ., Evanston, IL, 1976), Lecture Notes in Math., 551, Springer-Verlag, Berlin, 1976, 1–29 | DOI | MR | Zbl

[2] U. Jannsen, “Motivic sheaves and filtrations on Chow groups”, Motives (University of Washington, Seattle, WA, USA, 1991), Proc. Sympos. Pure Math., 55, Amer. Math. Soc., Providence, RI, 1994, 245–302 | MR | Zbl

[3] D. Mumford, “Rational equivalence of $0$-cycles on surfaces”, J. Math. Kyoto Univ., 9 (1969), 195–204 | MR | Zbl

[4] V. Guletskii, C. Pedrini, “Finite-dimensional motives and the conjectures of Beilinson and Murre”, $K$-Theory, 30:3 (2003), 243–263 | DOI | MR | Zbl

[5] Sh.-I. Kimura, “Chow groups are finite dimensional, in some sense”, Math. Ann., 331:1 (2005), 173–201 | DOI | MR | Zbl

[6] J. P. Murre, “Fano varieties and algebraic cycles”, The Fano conference (Torino, Italy, 2002), Univ. Torino, Torino, 2004, 51–68 | MR | Zbl

[7] W. Fulton, Intersection theory, Ergeb. Math. Grenzgeb. (3), 2, Springer-Verlag, Berlin, 1984 ; U. Fulton, Teoriya peresechenii, Mir, M., 1989 | MR | Zbl | MR

[8] B. B. Gordon, J. P. Murre, “Chow motives of elliptic modular threefolds”, J. Reine Angew. Math., 514 (1999), 145–164 | DOI | MR | Zbl

[9] Y. André, B. Kahn, P. O'Sullivan, “Nilpotence, radicaux et structures monoïdales”, Rend. Sem. Mat. Univ. Padova, 108 (2002), 107–291 | MR | Zbl

[10] P. Deligne, J. S. Milne, “Tannakian categories”, Hodge cycles, motives, and Shimura varieties, Lecture Notes in Math., 900, Springer-Verlag, Berlin–New York, 1982, 101–228 | DOI | MR | Zbl

[11] A. J. Scholl, “Classical motives”, Motives (University of Washington, Seattle, WA, USA, 1991), Proc. Sympos. Pure Math., 55, Amer. Math. Soc., Providence, RI, 1994, 163–187 | MR | Zbl

[12] V. Guletskiǐ, C. Pedrini, “The Chow motive of the Godeaux surface”, Algebraic geometry, de Gruyter, Berlin–New York, 2002, 179–195 | MR | Zbl