On the continuous part of codimension~2 algebraic
Sbornik. Mathematics, Tome 200 (2009) no. 3, pp. 325-338

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a nonsingular projective threefold over an algebraically closed field and let $A^2(X)$ be the group of algebraically trivial codimension 2 algebraic cycles on $X$ modulo rational equivalence with coefficients in $\mathbb Q$. Assume that $X$ is birationally equivalent to a threefold $X'$ fibered over an integral curve $C$ with generic fiber $X_{\bar \eta }$ satisfying the following three conditions: the motive $M(X'_{\bar \eta })$ is finite-dimensional; $H^1_{\mathrm{et}}(X_{\bar\eta},{\mathbb Q}_l)=\nobreak0$; $H^2_{\mathrm{et}}(X_{\bar \eta },{\mathbb Q} _l(1))$ is spanned by divisors on $X_{\bar \eta }$. We prove that under these three assumptions the group $A^2(X)$ is weakly representable: there exist a curve $Y$ and a correspondence $z$ on $Y\times X$ such that $z$ induces an epimorphism $A^1(Y)\to A^2(X)$, where $A^1(Y)$ is isomorphic to ${\mathrm{Pic}}^0(Y)$ tensored with $\mathbb Q$. In particular, this result holds for threefolds birationally equivalent to three-dimensional del Pezzo fibrations over a curve. Bibliography: 12 titles.
Keywords: threefolds, spreads.
Mots-clés : algebraic cycles, motives
@article{SM_2009_200_3_a1,
     author = {V. I. Guletskii},
     title = {On the continuous part of codimension~2 algebraic},
     journal = {Sbornik. Mathematics},
     pages = {325--338},
     publisher = {mathdoc},
     volume = {200},
     number = {3},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_3_a1/}
}
TY  - JOUR
AU  - V. I. Guletskii
TI  - On the continuous part of codimension~2 algebraic
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 325
EP  - 338
VL  - 200
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_3_a1/
LA  - en
ID  - SM_2009_200_3_a1
ER  - 
%0 Journal Article
%A V. I. Guletskii
%T On the continuous part of codimension~2 algebraic
%J Sbornik. Mathematics
%D 2009
%P 325-338
%V 200
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2009_200_3_a1/
%G en
%F SM_2009_200_3_a1
V. I. Guletskii. On the continuous part of codimension~2 algebraic. Sbornik. Mathematics, Tome 200 (2009) no. 3, pp. 325-338. http://geodesic.mathdoc.fr/item/SM_2009_200_3_a1/