Mots-clés : algebraic cycles, motives
@article{SM_2009_200_3_a1,
author = {V. I. Guletskii},
title = {On the continuous part of codimension~2 algebraic},
journal = {Sbornik. Mathematics},
pages = {325--338},
year = {2009},
volume = {200},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2009_200_3_a1/}
}
V. I. Guletskii. On the continuous part of codimension 2 algebraic. Sbornik. Mathematics, Tome 200 (2009) no. 3, pp. 325-338. http://geodesic.mathdoc.fr/item/SM_2009_200_3_a1/
[1] S. Bloch, “An example in the theory of algebraic cycles”, Algebraic $K$-theory (Northwestern Univ., Evanston, IL, 1976), Lecture Notes in Math., 551, Springer-Verlag, Berlin, 1976, 1–29 | DOI | MR | Zbl
[2] U. Jannsen, “Motivic sheaves and filtrations on Chow groups”, Motives (University of Washington, Seattle, WA, USA, 1991), Proc. Sympos. Pure Math., 55, Amer. Math. Soc., Providence, RI, 1994, 245–302 | MR | Zbl
[3] D. Mumford, “Rational equivalence of $0$-cycles on surfaces”, J. Math. Kyoto Univ., 9 (1969), 195–204 | MR | Zbl
[4] V. Guletskii, C. Pedrini, “Finite-dimensional motives and the conjectures of Beilinson and Murre”, $K$-Theory, 30:3 (2003), 243–263 | DOI | MR | Zbl
[5] Sh.-I. Kimura, “Chow groups are finite dimensional, in some sense”, Math. Ann., 331:1 (2005), 173–201 | DOI | MR | Zbl
[6] J. P. Murre, “Fano varieties and algebraic cycles”, The Fano conference (Torino, Italy, 2002), Univ. Torino, Torino, 2004, 51–68 | MR | Zbl
[7] W. Fulton, Intersection theory, Ergeb. Math. Grenzgeb. (3), 2, Springer-Verlag, Berlin, 1984 ; U. Fulton, Teoriya peresechenii, Mir, M., 1989 | MR | Zbl | MR
[8] B. B. Gordon, J. P. Murre, “Chow motives of elliptic modular threefolds”, J. Reine Angew. Math., 514 (1999), 145–164 | DOI | MR | Zbl
[9] Y. André, B. Kahn, P. O'Sullivan, “Nilpotence, radicaux et structures monoïdales”, Rend. Sem. Mat. Univ. Padova, 108 (2002), 107–291 | MR | Zbl
[10] P. Deligne, J. S. Milne, “Tannakian categories”, Hodge cycles, motives, and Shimura varieties, Lecture Notes in Math., 900, Springer-Verlag, Berlin–New York, 1982, 101–228 | DOI | MR | Zbl
[11] A. J. Scholl, “Classical motives”, Motives (University of Washington, Seattle, WA, USA, 1991), Proc. Sympos. Pure Math., 55, Amer. Math. Soc., Providence, RI, 1994, 163–187 | MR | Zbl
[12] V. Guletskiǐ, C. Pedrini, “The Chow motive of the Godeaux surface”, Algebraic geometry, de Gruyter, Berlin–New York, 2002, 179–195 | MR | Zbl