Foliations of nonnegative curvature on closed 3-dimensional manifolds
Sbornik. Mathematics, Tome 200 (2009) no. 3, pp. 313-324 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The structure of foliations of nonnegative curvature on closed 3-dimensional manifolds is described. A classification of closed orientable three-dimensional manifolds admitting a transversely orientable nonnegatively curved foliation is presented. Bibliography: 12 titles.
Keywords: curvature, three-dimensional manifold.
Mots-clés : foliation
@article{SM_2009_200_3_a0,
     author = {D. V. Bolotov},
     title = {Foliations of nonnegative curvature on closed 3-dimensional manifolds},
     journal = {Sbornik. Mathematics},
     pages = {313--324},
     year = {2009},
     volume = {200},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_3_a0/}
}
TY  - JOUR
AU  - D. V. Bolotov
TI  - Foliations of nonnegative curvature on closed 3-dimensional manifolds
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 313
EP  - 324
VL  - 200
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_3_a0/
LA  - en
ID  - SM_2009_200_3_a0
ER  - 
%0 Journal Article
%A D. V. Bolotov
%T Foliations of nonnegative curvature on closed 3-dimensional manifolds
%J Sbornik. Mathematics
%D 2009
%P 313-324
%V 200
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2009_200_3_a0/
%G en
%F SM_2009_200_3_a0
D. V. Bolotov. Foliations of nonnegative curvature on closed 3-dimensional manifolds. Sbornik. Mathematics, Tome 200 (2009) no. 3, pp. 313-324. http://geodesic.mathdoc.fr/item/SM_2009_200_3_a0/

[1] P. Scott, “The geometries of 3-manifolds”, Bull. London Math. Soc., 15:5 (1983), 401–487 | DOI | MR | Zbl | Zbl

[2] A. Hatcher, Notes on basic 3-manifold topology, Preprint, 2000

[3] I. Tamura, Topology of foliations, Sugaku Sensho, 80, Iwanami Shoten, Tokyo, 1976 | MR | MR | Zbl | Zbl

[4] J. Cheeger, D. Gromoll, “On the structure of complete manifolds of nonnegative curvature”, Ann. of Math. (2), 96:3 (1972), 413–443 | DOI | MR | Zbl

[5] J. F. Plante, “On the existence of exceptional minimal sets in foliations of codimension one”, J. Differential Equations, 15:1 (1974), 178–194 | DOI | MR | Zbl

[6] T. Nishimori, “Compact leaves with abelian holonomy”, Tohoku Math. J. (2), 27:2 (1975), 259–272 | DOI | MR | Zbl

[7] J. Cantwell, L. Conlon, “Reeb stability for noncompact leaves in foliated 3-manifolds”, Proc. Amer. Math. Soc., 83:2 (1981), 408–410 | DOI | MR | Zbl

[8] S. Adams, G. Stuck, “Splitting of nonnegatively curved leaves in minimal sets of foliations”, Duke Math. J., 71:1 (1993), 71–92 | DOI | MR | Zbl

[9] B. Evans, L. Moser, “Solvable fundamental groups of compact 3-manifolds”, Trans. Amer. Math. Soc., 168 (1972), 189–210 | DOI | MR | Zbl

[10] J. Stallings, “On fibering certain $3$-manifolds”, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961), Prentice-Hall, Englewood Cliffs, NJ, 1962, 95–100 | MR | Zbl

[11] S. P. Novikov, “Topology of foliations”, Trans. Moscow Math. Soc., 14 (1965), 268–304 | MR | Zbl

[12] H. Rosenberg, R. Roussarie, “Reeb Foliations”, Ann. of Math. (2), 91:1 (1970), 1–24 | DOI | MR | Zbl