Zero sequences of holomorphic functions, representation of meromorphic functions. II.~Entire functions
Sbornik. Mathematics, Tome 200 (2009) no. 2, pp. 283-312
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\Lambda=\{\lambda_k\}$ be a sequence of points in the complex plane $\mathbb C$ and $f$ a non-trivial entire function of finite order $\rho$ and finite type $\sigma$ such that $f=0$ on $\Lambda$. Upper
bounds for functions such as the Weierstrass-Hadamard canonical product of order $\rho$ constructed from the
sequence $\Lambda$ are obtained. Similar bounds for meromorphic functions are also derived. These results are used to estimate the radius of completeness of a system of exponentials in $\mathbb C$.
Bibliography: 26 titles.
Keywords:
function, zero sequence, subharmonic function, radius of completeness, system of exponentials.
@article{SM_2009_200_2_a6,
author = {B. N. Khabibullin},
title = {Zero sequences of holomorphic functions, representation of meromorphic functions. {II.~Entire} functions},
journal = {Sbornik. Mathematics},
pages = {283--312},
publisher = {mathdoc},
volume = {200},
number = {2},
year = {2009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2009_200_2_a6/}
}
TY - JOUR AU - B. N. Khabibullin TI - Zero sequences of holomorphic functions, representation of meromorphic functions. II.~Entire functions JO - Sbornik. Mathematics PY - 2009 SP - 283 EP - 312 VL - 200 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2009_200_2_a6/ LA - en ID - SM_2009_200_2_a6 ER -
B. N. Khabibullin. Zero sequences of holomorphic functions, representation of meromorphic functions. II.~Entire functions. Sbornik. Mathematics, Tome 200 (2009) no. 2, pp. 283-312. http://geodesic.mathdoc.fr/item/SM_2009_200_2_a6/