Zero sequences of holomorphic functions, representation of meromorphic functions. II. Entire functions
Sbornik. Mathematics, Tome 200 (2009) no. 2, pp. 283-312 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\Lambda=\{\lambda_k\}$ be a sequence of points in the complex plane $\mathbb C$ and $f$ a non-trivial entire function of finite order $\rho$ and finite type $\sigma$ such that $f=0$ on $\Lambda$. Upper bounds for functions such as the Weierstrass-Hadamard canonical product of order $\rho$ constructed from the sequence $\Lambda$ are obtained. Similar bounds for meromorphic functions are also derived. These results are used to estimate the radius of completeness of a system of exponentials in $\mathbb C$. Bibliography: 26 titles.
Keywords: function, zero sequence, subharmonic function, radius of completeness, system of exponentials.
@article{SM_2009_200_2_a6,
     author = {B. N. Khabibullin},
     title = {Zero sequences of holomorphic functions, representation of meromorphic functions. {II.~Entire} functions},
     journal = {Sbornik. Mathematics},
     pages = {283--312},
     year = {2009},
     volume = {200},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_2_a6/}
}
TY  - JOUR
AU  - B. N. Khabibullin
TI  - Zero sequences of holomorphic functions, representation of meromorphic functions. II. Entire functions
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 283
EP  - 312
VL  - 200
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_2_a6/
LA  - en
ID  - SM_2009_200_2_a6
ER  - 
%0 Journal Article
%A B. N. Khabibullin
%T Zero sequences of holomorphic functions, representation of meromorphic functions. II. Entire functions
%J Sbornik. Mathematics
%D 2009
%P 283-312
%V 200
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2009_200_2_a6/
%G en
%F SM_2009_200_2_a6
B. N. Khabibullin. Zero sequences of holomorphic functions, representation of meromorphic functions. II. Entire functions. Sbornik. Mathematics, Tome 200 (2009) no. 2, pp. 283-312. http://geodesic.mathdoc.fr/item/SM_2009_200_2_a6/

[1] B. Ja. Levin, Distribution of zeros of entire functions, Amer. Math. Soc., Providence, RI, 1964 | MR | MR | Zbl | Zbl

[2] B. Ya. Levin, Lectures on entire functions, Transl. Math. Monogr., 150, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl

[3] A. A. Goldberg, I. V. Ostrovskii, Value distribution of meromorphic functions, Transl. Math. Monogr., 236, Amer. Math. Soc., Providence, RI, 2008 | MR | MR | Zbl | Zbl

[4] W. K. Hayman, P. B. Kennedy, Subharmonic functions, vol. 1, London Math. Soc. Monogr. Ser., 9, Academic Press, London–New York–San Francisco, 1976 | MR | MR | Zbl | Zbl

[5] B. N. Khabibullin, “Zero sequences of holomorphic functions, representation of meromorphic functions, and harmonic minorants”, Sb. Math., 198:2 (2007), 261–298 | DOI | MR | Zbl

[6] A. Denjoy, “Sur les produits canoniques d'ordre infini”, J. Math. Pures Appl., 6:6 (1910), 1–136 | Zbl

[7] A. A. Goldberg, “Integral po poluadditivnoi mere i ego prilozhenie k teorii tselykh funktsii. I”, Matem. sb., 58(100):3 (1962), 289–334 | MR | Zbl

[8] A. Yu. Popov, “The least possible type under the order $\rho1$ of canonical products with positive zeros of a given upper $\rho$-density”, Moscow Univ. Math. Bull., 60:1 (2005), 32–36 | MR | Zbl

[9] G. G. Braichev, V. B. Sherstyukov, “Ob otsenkakh tipa i nizhnego tipa kanonicheskikh proizvedenii poryadka $\rho \in (0,1)$ c polozhitelnymi nulyami”, Teoriya funktsii, ee prilozheniya i smezhnye voprosy, Materialy Vosmoi mezhdunarodnoi shkoly-konferentsii (Kazan, 2007), Trudy Matematicheskogo tsentra imeni N. I. Lobachevskogo, 35, 2007, 42–44

[10] B. N. Khabibullin, Polnota sistem eksponent i mnozhestva edinstvennosti, t. 14: Obzor, RITs BashGU, Ufa, 2006

[11] L. A. Rubel, “Necessary and sufficient conditions for Carlson's theorem on entire functions”, Trans. Amer. Math. Soc., 83:2 (1956), 417–429 | DOI | MR | Zbl

[12] P. Malliavin, L. A. Rubel, “On small entire functions of exponential type with given zeros”, Bull. Soc. Math. France, 89 (1961), 175–206 | MR | Zbl

[13] B. N. Khabibullin, “On the growth of entire functions of exponential tyoe along the imaginary axis”, Math. USSR-Sb., 67:1 (1990), 261–298 | DOI | MR | Zbl | Zbl

[14] B. N. Khabibullin, “O roste vdol pryamoi tselykh funktsii eksponentsialnogo tipa s zadannymi nulyami”, Anal. Math., 17:3 (1991), 239–256 | DOI | MR | Zbl

[15] S. Mandelbrojt, Séries de Dirichlet. Principes et méthodes, Gauthier-Villars, Paris, 1969 | MR | Zbl | Zbl

[16] A. Yu. Popov, “Completeness of exponential systems with real exponents of a prescribed under density in spaces of analytic functions”, Moscow Univ. Math. Bull., 54:5 (1999), 47–51 | MR | Zbl

[17] B. N. Khabibullin, “On the type of entire and meromorphic functions”, Russian Acad. Sci. Sb. Math., 77:2 (1994), 293–301 | DOI | MR | Zbl

[18] A. F. Leontev, Obobscheniya ryadov eksponent, Nauka, M., 1981 | MR | Zbl

[19] M. A. Lawrentjew, B. W. Schabat, Methoden der komplexen Funktionentheorie, VEB, Berlin, 1967 | MR | MR | Zbl

[20] G. M. Fikhtengol'ts, Differential- und Integralrechnung, II, Hochschulbucher fur Math., 62, VEB Deutscher Verlag, Berlin, 1986 | MR | Zbl | Zbl

[21] B. N. Khabibullin, “Dual representation of superlinear functionals and its applications in function theory. II”, Izv. Math., 65:5 (2001), 1017–1039 | DOI | MR | Zbl

[22] M. R. Karimov, B. N. Khabibullin, “Sovpadenie nekotorykh plotnostei raspredeleniya mnozhestv i polnota sistem tselykh funktsii”, Trudy mezhdunarodnoi konferentsii “Kompleksnyi analiz, differentsialnye uravneniya i smezhnye voprosy”. III. Analiz i differentsialnye uravneniya, RITs BashGU, Ufa, 2000, 29–34

[23] L. Hörmander, The analysis of linear partial differential operators. II: Differential operators with constant coefficients, Grundlehren Math. Wiss., 257, Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1983 | MR | MR | Zbl | Zbl

[24] G. Pólya, G. Szegö, Aufgaben und Lehrsätze aus der Analysis, Band II: Funktionentheorie. Nullstellen. Polynome. Determinanten. Zahlentheorie, Springer-Verlag, Berlin–New York, 1964 | MR | MR | Zbl

[25] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integrals and series. Vol. 1. Elementary functions, Gordon and Breach, New York, 1986 | MR | MR | Zbl | Zbl

[26] M. A. Evgrafov, Asymptotic estimates and entire functions, Gordon and Breach, New York, 1961 | MR | MR | Zbl | Zbl