Zero sequences of holomorphic functions, representation of meromorphic functions. II.~Entire functions
Sbornik. Mathematics, Tome 200 (2009) no. 2, pp. 283-312

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Lambda=\{\lambda_k\}$ be a sequence of points in the complex plane $\mathbb C$ and $f$ a non-trivial entire function of finite order $\rho$ and finite type $\sigma$ such that $f=0$ on $\Lambda$. Upper bounds for functions such as the Weierstrass-Hadamard canonical product of order $\rho$ constructed from the sequence $\Lambda$ are obtained. Similar bounds for meromorphic functions are also derived. These results are used to estimate the radius of completeness of a system of exponentials in $\mathbb C$. Bibliography: 26 titles.
Keywords: function, zero sequence, subharmonic function, radius of completeness, system of exponentials.
@article{SM_2009_200_2_a6,
     author = {B. N. Khabibullin},
     title = {Zero sequences of holomorphic functions, representation of meromorphic functions. {II.~Entire} functions},
     journal = {Sbornik. Mathematics},
     pages = {283--312},
     publisher = {mathdoc},
     volume = {200},
     number = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_2_a6/}
}
TY  - JOUR
AU  - B. N. Khabibullin
TI  - Zero sequences of holomorphic functions, representation of meromorphic functions. II.~Entire functions
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 283
EP  - 312
VL  - 200
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_2_a6/
LA  - en
ID  - SM_2009_200_2_a6
ER  - 
%0 Journal Article
%A B. N. Khabibullin
%T Zero sequences of holomorphic functions, representation of meromorphic functions. II.~Entire functions
%J Sbornik. Mathematics
%D 2009
%P 283-312
%V 200
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2009_200_2_a6/
%G en
%F SM_2009_200_2_a6
B. N. Khabibullin. Zero sequences of holomorphic functions, representation of meromorphic functions. II.~Entire functions. Sbornik. Mathematics, Tome 200 (2009) no. 2, pp. 283-312. http://geodesic.mathdoc.fr/item/SM_2009_200_2_a6/