Conditions for the invertibility of the nonlinear difference operator
Sbornik. Mathematics, Tome 200 (2009) no. 2, pp. 261-282
Voir la notice de l'article provenant de la source Math-Net.Ru
Necessary and sufficient conditions are found for the invertibility of the nonlinear difference operator
$$
(\mathscr Rx)(n)=H(x(n),x(n+1)),\qquad n\in\mathbb Z,
$$
in the space of bounded two-sided number sequences. Here $H\colon \mathbb R^2\to \mathbb R $ is a continuous function.
Bibliography: 29 titles.
Keywords:
invertibility of a nonlinear operator, telegraph equations.
@article{SM_2009_200_2_a5,
author = {V. E. Slyusarchuk},
title = {Conditions for the invertibility of the nonlinear difference operator},
journal = {Sbornik. Mathematics},
pages = {261--282},
publisher = {mathdoc},
volume = {200},
number = {2},
year = {2009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2009_200_2_a5/}
}
V. E. Slyusarchuk. Conditions for the invertibility of the nonlinear difference operator. Sbornik. Mathematics, Tome 200 (2009) no. 2, pp. 261-282. http://geodesic.mathdoc.fr/item/SM_2009_200_2_a5/