Conditions for the invertibility of the nonlinear difference operator
Sbornik. Mathematics, Tome 200 (2009) no. 2, pp. 261-282

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient conditions are found for the invertibility of the nonlinear difference operator $$ (\mathscr Rx)(n)=H(x(n),x(n+1)),\qquad n\in\mathbb Z, $$ in the space of bounded two-sided number sequences. Here $H\colon \mathbb R^2\to \mathbb R $ is a continuous function. Bibliography: 29 titles.
Keywords: invertibility of a nonlinear operator, telegraph equations.
@article{SM_2009_200_2_a5,
     author = {V. E. Slyusarchuk},
     title = {Conditions for the invertibility of the nonlinear difference operator},
     journal = {Sbornik. Mathematics},
     pages = {261--282},
     publisher = {mathdoc},
     volume = {200},
     number = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_2_a5/}
}
TY  - JOUR
AU  - V. E. Slyusarchuk
TI  - Conditions for the invertibility of the nonlinear difference operator
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 261
EP  - 282
VL  - 200
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_2_a5/
LA  - en
ID  - SM_2009_200_2_a5
ER  - 
%0 Journal Article
%A V. E. Slyusarchuk
%T Conditions for the invertibility of the nonlinear difference operator
%J Sbornik. Mathematics
%D 2009
%P 261-282
%V 200
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2009_200_2_a5/
%G en
%F SM_2009_200_2_a5
V. E. Slyusarchuk. Conditions for the invertibility of the nonlinear difference operator. Sbornik. Mathematics, Tome 200 (2009) no. 2, pp. 261-282. http://geodesic.mathdoc.fr/item/SM_2009_200_2_a5/