@article{SM_2009_200_2_a5,
author = {V. E. Slyusarchuk},
title = {Conditions for the invertibility of the nonlinear difference operator},
journal = {Sbornik. Mathematics},
pages = {261--282},
year = {2009},
volume = {200},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2009_200_2_a5/}
}
V. E. Slyusarchuk. Conditions for the invertibility of the nonlinear difference operator. Sbornik. Mathematics, Tome 200 (2009) no. 2, pp. 261-282. http://geodesic.mathdoc.fr/item/SM_2009_200_2_a5/
[1] A. Halanay, D. Wexler, Teoria calitativǎ a sistemelor cu impulsuri, Editura Academiei Republicii Socialiste Romania, Bucharest, 1968 | MR | MR | Zbl | Zbl
[2] D. I. Martynyuk, Lektsii po kachestvennoi teorii raznostnykh uravnenii, Naukova dumka, Kiev, 1972 | MR | Zbl
[3] A. Ya. Dorogovtsev, Periodicheskie i statsionarnye rezhimy beskonechnomernykh determinirovannykh i stokhasticheskikh dinamicheskikh sistem, Vischa shkola, Kiev, 1992 | MR | Zbl
[4] Ch. V. Coffman, J. J. Schäffer, “Dichotomies for linear difference equations”, Math. Ann., 172:2 (1967), 139–166 | DOI | MR | Zbl
[5] V. E. Slyusarchuk, “Invertibility of nonautonomous linear difference operators in the space of bounded functions on $\mathbf Z$”, Math. Notes, 37:5 (1985), 360–363 | DOI | MR | Zbl
[6] V. E. Slyusarchuk, “Weakly nonlinear perturbations of normally solvable functional-differential and discrete equations”, Ukrainian Math. J., 39:5 (1987), 540–542 | DOI | Zbl
[7] A. G. Baskakov, “Invertibility and the fredholm property of difference operators”, Math. Notes, 67:6 (2000), 690–698 | DOI | MR | Zbl
[8] V. Yu. Slyusarchuk, Oborotnist neliniinikh riznitsevikh operatoriv, Vidavnitstvo natsionalnogo universitetu vodnogo gospodarstva ta prirodokoristuvannya, Rivne, 2006
[9] V. Yu. Slyusarchuk, “Invertibility conditions for the nonlinear difference operator $(\mathscr Dx)(n)=x(n+1)-f(x(n))$ in the space $l_\infty(\mathbb Z,\mathbb R)$”, Nonlinear Oscil. (N. Y.), 9:2 (2006), 237–256 | DOI | MR
[10] V. Yu. Slyusarchuk, “Necessary and sufficient conditions for the lipschitzian invertibility of nonlinear difference operators in the spaces $l_p(\mathbb Z,\mathbb R)$ with $1\le p\le\infty$”, Math. Notes, 68:3 (2000), 386–391 | DOI | MR | Zbl
[11] V. Yu. Slyusarchuk, “Neobkhidni i dostatni umovi lipshitsevoïoborotnosti neliniinikh riznitsevikh operatoriv u prostori maizhe periodichnikh chislovikh poslidovnostei”, Kraiovi zadachi dlya diferentsialnikh rivnyan. Zb. nauk. pr., no. 6, Vid-vo “Prut”, Chernivtsi, 2001, 270–276
[12] V. Yu. Slyusarchuk, “Neobkhidni i dostatni umovi isnuvannya periodichnikh rozv'yazkiv neliniinogo rivnyannya $x(n+1)-f(x(n))=h(n)$, $n\in\mathbb Z$”, Kraiovi zadachi dlya diferentsialnikh rivnyan. Zb. nauk. pr., no. 7, Vid-vo “Prut”, Chernivtsi, 2001, 237–243
[13] É. Mukhamadiev, “On the inversion of functional operators in a space of functions bounded on the axes”, Math. Notes, 11:3 (1972), 169–172 | DOI | MR | Zbl
[14] E. Mukhamadiev, Issledovaniya po teorii periodicheskikh i ogranichennykh reshenii differentsialnykh uravnenii, Dis. ... dokt. fiz.-matem. nauk, LOMI, L., 1978
[15] V. E. Sljusarčuk, “Invertibility of almost periodic $c$-continuous functional operators”, Math. USSR-Sb., 44:4 (1983), 431–446 | DOI | MR | Zbl | Zbl
[16] V. E. Slyusarchuk, “Integralnoe predstavlenie $c$-nepreryvnykh lineinykh operatorov”, Doklady AN USSR, Ser. A, 1981, no. 8, 35–38 | MR | Zbl
[17] V. E. Slyusarchuk, “Invertibility of nonautonomous functional-differential operators”, Math. USSR-Sb., 58:1 (1987), 83–100 | DOI | MR | Zbl
[18] V. E. Slyusarchuk, “Necessary and sufficient conditions for invertibility of nonautonomous functional-differential operators”, Math. Notes, 42:2 (1987), 648–651 | DOI | MR | Zbl | Zbl
[19] V. E. Slyusarchuk, “Necessary and sufficient conditions for invertibility of uniformly $c$-continuous functional-differential operators”, Ukrainian Math. J., 41:2 (1989), 180–183 | DOI | MR | Zbl
[20] V. G. Kurbatov, Lineinye differentsialno-raznostnye uravneniya, Izd-vo Voronezh. un-ta, Voronezh, 1990 | MR | Zbl
[21] Chan Khyu Bong, Pochti periodicheskie i ogranichennye resheniya lineinykh funktsionalno-differentsialnykh uravnenii, Dis. ... dokt. fiz.-matem. nauk, Institut matematiki AN Ukrainy, Kiev, 1993
[22] V. E. Slyusarchuk, “Metod $c$-nepreryvnykh operatorov v teorii impulsnykh sistem”, Tezisy dokladov Vsesoyuznoi konferentsii po teorii i prilozheniyam funktsionalno-differentsialnykh uravnenii (Dushanbe), 1987, 102–103
[23] V. E. Slyusarchuk, “Slabo nelineinye vozmuscheniya impulsnykh sistem”, Matem. fizika i nelineinaya mekh., 1991, no. 15(49), 32–35 | MR
[24] V. Yu. Slyusarchuk, “Teorema pro isnuvannya neyavnoï nediferentsiiovnoïfunktsiï”, Kraiovi zadachi dlya diferentsialnikh rivnyan. Zb. nauk. pr., no. 14, Vid-vo “Prut”, Chernivtsi, 2006, 193–200
[25] L. Nirenberg, Topic in nonlinear functional analysis, Courant Institute of Math. Sciences, New York Univ., New York, 1974 | MR | MR | Zbl | Zbl
[26] A. D. Aleksandrov, N. Yu. Netsvetaev, Geometriya, Nauka, M., 1990 | MR | Zbl
[27] G. M. Fikhtengol'ts, Differential- und Integralrechnung, vol. I, Hochschulbucher fur Math., 61, VEB Deutscher Verlag, Berlin, 1986 | MR | Zbl | Zbl
[28] V. Yu. Slyusarchuk, “Obmezheni rozv'yazki sistemi telegrafnikh rivnyan”, Kraiovi zadachi dlya diferentsialnikh rivnyan. Zb. nauk. pr., no. 13, Vid-vo “Prut”, Chernivtsi, 2006, 199–211
[29] D. Nagumo, M. Shimura, “Avtokolebaniya v dlinnoi linii s tunnelnym diodom”, TIIER, 49:8 (1961), 1494–1504