@article{SM_2009_200_2_a4,
author = {S. G. Pribegin},
title = {Some summability methods for power series of functions in $H^p(D^n)$, $0<p<\infty$},
journal = {Sbornik. Mathematics},
pages = {243--260},
year = {2009},
volume = {200},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2009_200_2_a4/}
}
S. G. Pribegin. Some summability methods for power series of functions in $H^p(D^n)$, $0
[1] W. Rudin, Function theory in polydiscs, Benjamin, New York–Amsterdam, 1969 | MR | MR | Zbl | Zbl
[2] A. A. Soljanik, “On the order of approximation to functions of $H^p(\mathbb R)$ ($0
\le1$) by certain means of Fourier integrals”, Anal. Math., 12:1 (1986), 59–75 | DOI | MR | Zbl[3] R. M. Trigub, “Multipliers in the Hardy spaces $H_p(D^m)$ with $p\in (0,1]$ and approximation properties of summability methods for power series”, Sb. Math., 188:4 (1997), 621–638 | DOI | MR | Zbl
[4] S. G. Pribegin, “Approximation of functions in $H^p$, $0
\le1$, by generalized Riesz means with fractional exponents”, Sb. Math., 197:7 (2006), 1025–1035 | DOI | MR | Zbl[5] S. G. Pribegin, “Priblizhenie funktsii iz $H^p(D^n)$, $0
\infty$, obobschennymi srednimi Rissa–Bokhnera”, Sovremennye metody teorii funktsii i smezhnye problemy, Materialy zimnei matematicheskoi shkoly, Voronezh, Voronezhskii gosudarstvennyi universitet, 2007, 184–185[6] E. A. Storozhenko, “O priblizhenii funktsii klassa $H^p$, $0
1$”, Soobsch. AN GSSR, 88:1 (1977), 45–48 | MR | Zbl[7] È. A. Storozhenko, “On a problem of Hardy–Littlewood”, Math. USSR-Sb., 47:2 (1984), 557–577 | DOI | MR | Zbl
[8] S. G. Pribegin, “A method for summing Fourier integrals of functions from $H^p(E_{2n}^+)$, $0
\infty$”, Math. Notes, 82:5–6 (2007), 643–652 | DOI | MR | Zbl[9] S. G. Pribegin, “A method of approximation in $H^p$, $0
\le 1$”, Sb. Math., 192:11 (2001), 1705–1719 | DOI | MR | Zbl[10] È. A. Storoženko, “Approximation of functions of class $H^p$, $0
\le 1$”, Math. USSR-Sb., 34:4 (1978), 527–545 | DOI | MR | Zbl | Zbl[11] È. A. Storoženko, “Theorems of Jackson type in $H^p$, $0
1$”, Math. USSR-Izv., 17:1 (1981), 203–218 | DOI | MR | Zbl | Zbl[12] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR | Zbl
[13] U. Westphal, “An approach to fractional powers of operators via fractional differences”, Proc. London Math. Soc. (3), 29 (1974), 557–576 | DOI | MR | Zbl