Some summability methods for power series of functions in $H^p(D^n)$, $0$
Sbornik. Mathematics, Tome 200 (2009) no. 2, pp. 243-260 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $H^p(D^n)$ be a Hardy space in the unit polydisc $$ D^n=\{z\in\mathbb C^n:|z_j|<1,\,j=1,\dots,n\} $$ and let $$ R^{l,\alpha}_\varepsilon(f,e^{i\theta})=\sum_k(1-(\varepsilon|k|)^l)^\alpha_+\widehat f_ke^{ik\theta}, \qquad l>0, \quad \alpha>0, $$ be the generalized Riesz means of a function $f\in H^p(D^n)$. For certain standard relations between $p$, $l$, $n$ and $\alpha$ the following estimate is established: $$ C_1(\alpha,l,p)\widetilde{\omega}_l(\varepsilon,f)_p \le\bigl\|f(e^{i\theta})-R_\varepsilon^{l,\alpha}(f,e^{i\theta})\bigr\|_p \le C_2(\alpha,l,p)\omega_l(\varepsilon,f)_p, $$ where $\widetilde\omega_l(\varepsilon,f)_p$ and $\omega_l(\varepsilon,f)_p$ are integral moduli of continuity of order $l$. Bibliography: 13 titles.
Keywords: series' means, generalized Riesz means, generalized Abel-Poisson means, right fractional Riemann-Liouville integral, right fractional derivative.
@article{SM_2009_200_2_a4,
     author = {S. G. Pribegin},
     title = {Some summability methods for power series of functions in $H^p(D^n)$, $0<p<\infty$},
     journal = {Sbornik. Mathematics},
     pages = {243--260},
     year = {2009},
     volume = {200},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_2_a4/}
}
TY  - JOUR
AU  - S. G. Pribegin
TI  - Some summability methods for power series of functions in $H^p(D^n)$, $0
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 243
EP  - 260
VL  - 200
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_2_a4/
LA  - en
ID  - SM_2009_200_2_a4
ER  - 
%0 Journal Article
%A S. G. Pribegin
%T Some summability methods for power series of functions in $H^p(D^n)$, $0
%J Sbornik. Mathematics
%D 2009
%P 243-260
%V 200
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2009_200_2_a4/
%G en
%F SM_2009_200_2_a4
S. G. Pribegin. Some summability methods for power series of functions in $H^p(D^n)$, $0
                      
                    

[1] W. Rudin, Function theory in polydiscs, Benjamin, New York–Amsterdam, 1969 | MR | MR | Zbl | Zbl

[2] A. A. Soljanik, “On the order of approximation to functions of $H^p(\mathbb R)$ ($0

\le1$) by certain means of Fourier integrals”, Anal. Math., 12:1 (1986), 59–75 | DOI | MR | Zbl

[3] R. M. Trigub, “Multipliers in the Hardy spaces $H_p(D^m)$ with $p\in (0,1]$ and approximation properties of summability methods for power series”, Sb. Math., 188:4 (1997), 621–638 | DOI | MR | Zbl

[4] S. G. Pribegin, “Approximation of functions in $H^p$, $0

\le1$, by generalized Riesz means with fractional exponents”, Sb. Math., 197:7 (2006), 1025–1035 | DOI | MR | Zbl

[5] S. G. Pribegin, “Priblizhenie funktsii iz $H^p(D^n)$, $0

\infty$, obobschennymi srednimi Rissa–Bokhnera”, Sovremennye metody teorii funktsii i smezhnye problemy, Materialy zimnei matematicheskoi shkoly, Voronezh, Voronezhskii gosudarstvennyi universitet, 2007, 184–185

[6] E. A. Storozhenko, “O priblizhenii funktsii klassa $H^p$, $0

1$”, Soobsch. AN GSSR, 88:1 (1977), 45–48 | MR | Zbl

[7] È. A. Storozhenko, “On a problem of Hardy–Littlewood”, Math. USSR-Sb., 47:2 (1984), 557–577 | DOI | MR | Zbl

[8] S. G. Pribegin, “A method for summing Fourier integrals of functions from $H^p(E_{2n}^+)$, $0

\infty$”, Math. Notes, 82:5–6 (2007), 643–652 | DOI | MR | Zbl

[9] S. G. Pribegin, “A method of approximation in $H^p$, $0

\le 1$”, Sb. Math., 192:11 (2001), 1705–1719 | DOI | MR | Zbl

[10] È. A. Storoženko, “Approximation of functions of class $H^p$, $0

\le 1$”, Math. USSR-Sb., 34:4 (1978), 527–545 | DOI | MR | Zbl | Zbl

[11] È. A. Storoženko, “Theorems of Jackson type in $H^p$, $0

1$”, Math. USSR-Izv., 17:1 (1981), 203–218 | DOI | MR | Zbl | Zbl

[12] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR | Zbl

[13] U. Westphal, “An approach to fractional powers of operators via fractional differences”, Proc. London Math. Soc. (3), 29 (1974), 557–576 | DOI | MR | Zbl