Constructions of regular algebras $\mathscr L_p^w(G)$
Sbornik. Mathematics, Tome 200 (2009) no. 2, pp. 229-241

Voir la notice de l'article provenant de la source Math-Net.Ru

A criterion for (Shilov) regularity of weighted algebras ${\mathscr L}_1^w(G)$ on a locally compact Abelian group $G$ is known from works of Beurling (1949) and Domar (1956). In the present paper this criterion is extended to translation-invariant weighted algebras $\mathscr L_p^w(G)$ with $p>1$. Regular algebras $\mathscr L_p^w(G)$ are constructed on any $\sigma$-compact Abelian group $G$. It was proved earlier by the author that $\sigma$-compactness is necessary (in the Abelian case) for the existence of weighted algebras $\mathscr L_p^w(G)$ with $p>1$. Bibliography: 11 titles.
Keywords: locally compact Abelian group, regular algebra, Beurling algebras, weighted algebras.
@article{SM_2009_200_2_a3,
     author = {Yu. N. Kuznetsova},
     title = {Constructions of regular algebras $\mathscr L_p^w(G)$},
     journal = {Sbornik. Mathematics},
     pages = {229--241},
     publisher = {mathdoc},
     volume = {200},
     number = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_2_a3/}
}
TY  - JOUR
AU  - Yu. N. Kuznetsova
TI  - Constructions of regular algebras $\mathscr L_p^w(G)$
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 229
EP  - 241
VL  - 200
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_2_a3/
LA  - en
ID  - SM_2009_200_2_a3
ER  - 
%0 Journal Article
%A Yu. N. Kuznetsova
%T Constructions of regular algebras $\mathscr L_p^w(G)$
%J Sbornik. Mathematics
%D 2009
%P 229-241
%V 200
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2009_200_2_a3/
%G en
%F SM_2009_200_2_a3
Yu. N. Kuznetsova. Constructions of regular algebras $\mathscr L_p^w(G)$. Sbornik. Mathematics, Tome 200 (2009) no. 2, pp. 229-241. http://geodesic.mathdoc.fr/item/SM_2009_200_2_a3/