Constructions of regular algebras $\mathscr L_p^w(G)$
Sbornik. Mathematics, Tome 200 (2009) no. 2, pp. 229-241 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A criterion for (Shilov) regularity of weighted algebras ${\mathscr L}_1^w(G)$ on a locally compact Abelian group $G$ is known from works of Beurling (1949) and Domar (1956). In the present paper this criterion is extended to translation-invariant weighted algebras $\mathscr L_p^w(G)$ with $p>1$. Regular algebras $\mathscr L_p^w(G)$ are constructed on any $\sigma$-compact Abelian group $G$. It was proved earlier by the author that $\sigma$-compactness is necessary (in the Abelian case) for the existence of weighted algebras $\mathscr L_p^w(G)$ with $p>1$. Bibliography: 11 titles.
Keywords: locally compact Abelian group, regular algebra, Beurling algebras, weighted algebras.
@article{SM_2009_200_2_a3,
     author = {Yu. N. Kuznetsova},
     title = {Constructions of regular algebras $\mathscr L_p^w(G)$},
     journal = {Sbornik. Mathematics},
     pages = {229--241},
     year = {2009},
     volume = {200},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_2_a3/}
}
TY  - JOUR
AU  - Yu. N. Kuznetsova
TI  - Constructions of regular algebras $\mathscr L_p^w(G)$
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 229
EP  - 241
VL  - 200
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_2_a3/
LA  - en
ID  - SM_2009_200_2_a3
ER  - 
%0 Journal Article
%A Yu. N. Kuznetsova
%T Constructions of regular algebras $\mathscr L_p^w(G)$
%J Sbornik. Mathematics
%D 2009
%P 229-241
%V 200
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2009_200_2_a3/
%G en
%F SM_2009_200_2_a3
Yu. N. Kuznetsova. Constructions of regular algebras $\mathscr L_p^w(G)$. Sbornik. Mathematics, Tome 200 (2009) no. 2, pp. 229-241. http://geodesic.mathdoc.fr/item/SM_2009_200_2_a3/

[1] G. E. Shilov, O regulyarnykh normirovannykh koltsakh, Tr. MIAN, 21, Nauka, M.–L., 1947 | MR | Zbl

[2] I. M. Gelfand, D. A. Raikow, G. E. Schilow, Kommutative normierte Algebren, VEB, Berlin, 1964 | MR | MR | Zbl | Zbl

[3] R. E. Edwards, “The stability of weighted Lebesgue spaces”, Trans. Amer. Math. Soc., 93:3 (1959), 369–394 | DOI | MR | Zbl

[4] A. Beurling, “On the spectral synthesis of bounded functions”, Acta Math., 81:1 (1949), 225–238 | DOI | MR | Zbl

[5] Y. Domar, “Harmonic analysis based on certain commutative Banach algebras”, Acta Math., 96:1 (1956), 1–66 | DOI | MR | Zbl

[6] Yu. N. Kuznetsova, “Invariantnye vesovye algebry $\mathscr L_p^w(G)$”, Matem. zametki, 84:4 (2008), 567–576

[7] Yu. N. Kuznetsova, “Weighted $L_p$-algebras on groups”, Funct. Anal. Appl., 40:3 (2006), 234–236 | DOI | MR | Zbl

[8] H. G. Feichtinger, “Gewichtsfunktionen auf lokalkompakten Gruppen”, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II, 188:8–10 (1979), 451–471 | MR | Zbl

[9] R. E. A. C. Paley, N. Wiener, Fourier transforms in the complex domain, Amer. Math. Soc., New York, 1934 | MR | MR | Zbl | Zbl

[10] W. Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, 12, Intersci. Publ., New York–London, 1962 | MR | Zbl

[11] E. Hewitt, K. A. Ross, Abstract harmonic analysis, vol. I, II, Academic Press, New York; Springer-Verlag, Berlin–Göttingen–Heidelberg, 1963–1970 | MR | MR | MR | MR | Zbl