Constructions of regular algebras $\mathscr L_p^w(G)$
Sbornik. Mathematics, Tome 200 (2009) no. 2, pp. 229-241
Voir la notice de l'article provenant de la source Math-Net.Ru
A criterion for (Shilov) regularity of weighted algebras ${\mathscr L}_1^w(G)$ on a locally compact Abelian group $G$ is known from works of Beurling (1949) and Domar (1956). In the present paper this criterion is extended to translation-invariant weighted algebras $\mathscr L_p^w(G)$ with $p>1$. Regular algebras
$\mathscr L_p^w(G)$ are constructed on any $\sigma$-compact Abelian group $G$. It was proved earlier by the author that $\sigma$-compactness is necessary (in the Abelian case) for the existence of weighted algebras
$\mathscr L_p^w(G)$ with $p>1$.
Bibliography: 11 titles.
Keywords:
locally compact Abelian group, regular algebra, Beurling algebras, weighted algebras.
@article{SM_2009_200_2_a3,
author = {Yu. N. Kuznetsova},
title = {Constructions of regular algebras $\mathscr L_p^w(G)$},
journal = {Sbornik. Mathematics},
pages = {229--241},
publisher = {mathdoc},
volume = {200},
number = {2},
year = {2009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2009_200_2_a3/}
}
Yu. N. Kuznetsova. Constructions of regular algebras $\mathscr L_p^w(G)$. Sbornik. Mathematics, Tome 200 (2009) no. 2, pp. 229-241. http://geodesic.mathdoc.fr/item/SM_2009_200_2_a3/