Asymptotic behaviour of the discrete spectrum of a~quasi-periodic
Sbornik. Mathematics, Tome 200 (2009) no. 2, pp. 215-228

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with the asymptotic properties of the discrete spectrum of two-dimensional self-adjoint operators of hyperbolic type. For the operator of the model quasi-periodic boundary value problem associated with a self-adjoint hyperbolic equation with smooth coefficients on a two-dimensional torus we obtain an asymptotic formula for the distribution function of the eigenvalues. Bibliography: 9 titles.
Keywords: two-dimensional hyperbolic equation, quasi-periodic boundary value problem, spectrum, distribution of eigenvalues.
@article{SM_2009_200_2_a2,
     author = {V. M. Kaplitskii},
     title = {Asymptotic behaviour of the discrete spectrum of a~quasi-periodic},
     journal = {Sbornik. Mathematics},
     pages = {215--228},
     publisher = {mathdoc},
     volume = {200},
     number = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_2_a2/}
}
TY  - JOUR
AU  - V. M. Kaplitskii
TI  - Asymptotic behaviour of the discrete spectrum of a~quasi-periodic
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 215
EP  - 228
VL  - 200
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_2_a2/
LA  - en
ID  - SM_2009_200_2_a2
ER  - 
%0 Journal Article
%A V. M. Kaplitskii
%T Asymptotic behaviour of the discrete spectrum of a~quasi-periodic
%J Sbornik. Mathematics
%D 2009
%P 215-228
%V 200
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2009_200_2_a2/
%G en
%F SM_2009_200_2_a2
V. M. Kaplitskii. Asymptotic behaviour of the discrete spectrum of a~quasi-periodic. Sbornik. Mathematics, Tome 200 (2009) no. 2, pp. 215-228. http://geodesic.mathdoc.fr/item/SM_2009_200_2_a2/