Asymptotic behaviour of the discrete spectrum of a~quasi-periodic
Sbornik. Mathematics, Tome 200 (2009) no. 2, pp. 215-228
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is concerned with the asymptotic properties of the discrete
spectrum of two-dimensional self-adjoint operators of hyperbolic type.
For the operator of the model quasi-periodic boundary value problem associated
with a self-adjoint hyperbolic equation with smooth coefficients on
a two-dimensional torus we obtain an asymptotic formula for the
distribution function of the eigenvalues.
Bibliography: 9 titles.
Keywords:
two-dimensional hyperbolic equation, quasi-periodic boundary value problem, spectrum, distribution of eigenvalues.
@article{SM_2009_200_2_a2,
author = {V. M. Kaplitskii},
title = {Asymptotic behaviour of the discrete spectrum of a~quasi-periodic},
journal = {Sbornik. Mathematics},
pages = {215--228},
publisher = {mathdoc},
volume = {200},
number = {2},
year = {2009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2009_200_2_a2/}
}
V. M. Kaplitskii. Asymptotic behaviour of the discrete spectrum of a~quasi-periodic. Sbornik. Mathematics, Tome 200 (2009) no. 2, pp. 215-228. http://geodesic.mathdoc.fr/item/SM_2009_200_2_a2/