Asymptotic behaviour of the discrete spectrum of a quasi-periodic
Sbornik. Mathematics, Tome 200 (2009) no. 2, pp. 215-228 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is concerned with the asymptotic properties of the discrete spectrum of two-dimensional self-adjoint operators of hyperbolic type. For the operator of the model quasi-periodic boundary value problem associated with a self-adjoint hyperbolic equation with smooth coefficients on a two-dimensional torus we obtain an asymptotic formula for the distribution function of the eigenvalues. Bibliography: 9 titles.
Keywords: two-dimensional hyperbolic equation, quasi-periodic boundary value problem, spectrum, distribution of eigenvalues.
@article{SM_2009_200_2_a2,
     author = {V. M. Kaplitskii},
     title = {Asymptotic behaviour of the discrete spectrum of a~quasi-periodic},
     journal = {Sbornik. Mathematics},
     pages = {215--228},
     year = {2009},
     volume = {200},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_2_a2/}
}
TY  - JOUR
AU  - V. M. Kaplitskii
TI  - Asymptotic behaviour of the discrete spectrum of a quasi-periodic
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 215
EP  - 228
VL  - 200
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_2_a2/
LA  - en
ID  - SM_2009_200_2_a2
ER  - 
%0 Journal Article
%A V. M. Kaplitskii
%T Asymptotic behaviour of the discrete spectrum of a quasi-periodic
%J Sbornik. Mathematics
%D 2009
%P 215-228
%V 200
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2009_200_2_a2/
%G en
%F SM_2009_200_2_a2
V. M. Kaplitskii. Asymptotic behaviour of the discrete spectrum of a quasi-periodic. Sbornik. Mathematics, Tome 200 (2009) no. 2, pp. 215-228. http://geodesic.mathdoc.fr/item/SM_2009_200_2_a2/

[1] M. Sh. Birman, M. Z. Solomyak, “Asymptotic behavior of the spectrum of differential equations”, J. Soviet Math., 12:3 (1979), 247–283 | DOI | MR | Zbl | Zbl

[2] M. A. Shubin, Pseudodifferential operators and spectral theory, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1987 | MR | MR | Zbl | Zbl

[3] I. V. Volovich, V. V. Kozlov, “Square integrable solutions to the Klein–Gordon equation on a manifold”, Dokl. Akad. Nauk SSSR, 73:3 (2006), 441–444 | DOI | MR | Zbl

[4] V. V. Kozlov, I. V. Volovich, “Finite action Klein–Gordon solutions on Lorentzian manifolds”, Int. J. Geom. Methods Mod. Phys., 3:7 (2006), 1349–1357 | DOI | MR | Zbl

[5] E. C. Titchmarsh, The theory of the Riemann zeta-function, Clarendon Press, Oxford, 1951 | MR | Zbl

[6] K. Chandrasekharan, Introduction to analytic number theory, Springer-Verlag, New York, 1968 | MR | MR | Zbl

[7] M. Reed, B. Simon, Methods of modern mathematical physics. II: Fourier analysis, self-adjointness, Academic Press, New York–London, 1975 | MR | MR | Zbl

[8] A. S. Markus, V. I. Matsaev, “A theorem on comparison of spectra, and the spectral asymptotics for a Keldysh pencil”, Math. USSR-Sb., 51:2 (1985), 389–404 | DOI | MR | Zbl | Zbl

[9] A. S. Markus, V. I. Matsaev, “Comparison theorems for spectra of linear operators, and spectral asymptotics”, Trans. Moscow Math. Soc., 1 (1984), 139–187 | MR | Zbl | Zbl