Some properties of the space of $n$-dimensional Lie algebras
Sbornik. Mathematics, Tome 200 (2009) no. 2, pp. 185-213 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Some general properties of the space $\mathscr L_n$ of $n$-dimensional Lie algebras are studied. This space is defined by the system of Jacobi's quadratic equations. It is proved that these equations are linearly independent and equivalent to each other (more precisely, the quadratic forms defining these equations are affinely equivalent). Moreover, the problem on the closures of some orbits of the natural action of the group $\mathrm{GL}_n$ on $\mathscr L_n$ is considered. Two Lie algebras are indicated whose orbits are closed in the projectivization of the space $\mathscr L_n$. The intersection of all irreducible components of the space $\mathscr L_n$ is also treated. It is proved that this intersection is nontrivial and consists of nilpotent Lie algebras. Two Lie algebras belonging to this intersection are indicated. Some other results concerning arbitrary Lie algebras and the space $\mathscr L_n$ formed by these algebras are presented. Bibliography: 17 titles.
Keywords: Lie algebra, Jacobi's identity, irreducible component, contraction.
@article{SM_2009_200_2_a1,
     author = {V. V. Gorbatsevich},
     title = {Some properties of the space of $n$-dimensional {Lie} algebras},
     journal = {Sbornik. Mathematics},
     pages = {185--213},
     year = {2009},
     volume = {200},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_2_a1/}
}
TY  - JOUR
AU  - V. V. Gorbatsevich
TI  - Some properties of the space of $n$-dimensional Lie algebras
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 185
EP  - 213
VL  - 200
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_2_a1/
LA  - en
ID  - SM_2009_200_2_a1
ER  - 
%0 Journal Article
%A V. V. Gorbatsevich
%T Some properties of the space of $n$-dimensional Lie algebras
%J Sbornik. Mathematics
%D 2009
%P 185-213
%V 200
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2009_200_2_a1/
%G en
%F SM_2009_200_2_a1
V. V. Gorbatsevich. Some properties of the space of $n$-dimensional Lie algebras. Sbornik. Mathematics, Tome 200 (2009) no. 2, pp. 185-213. http://geodesic.mathdoc.fr/item/SM_2009_200_2_a1/

[1] V. V. Gorbatsevich, “Contractions and degenerations of finite-dimensional algebras”, Soviet Math. (Iz. VUZ), 35:10 (1991), 17–24 | MR | Zbl

[2] D. Cox, J. Little, D. O'Shea, Ideals, varieties, and algorithms. An introduction to computational algebraic geometry and commutative algebra, Undergrad. Texts Math., Springer-Verlag, New York, 1992 | MR | Zbl

[3] R. Carles, Introduction aux deformation d'algebres de Lie de dimension fini, vol. 19, Univ. de Poitier, Poitier, 1986

[4] J. Dozias, “Sur les dérivations des algèbres de Lie”, C. R. Acad. Sci. Paris, 259 (1964), 2748–2750 | MR | Zbl

[5] Yu. A. Neretin, “An estimate of the number of parameters defining an $n$-dimensional algebra”, Math. USSR-Izv., 30:2 (1988), 283–294 | DOI | MR | Zbl | Zbl

[6] L. Le Bruyn, Z. Reichstein, “Smoothness in algebraic geography”, Proc. London Math. Soc. (3), 79:1 (1999), 158–190 | DOI | MR | Zbl

[7] H. Kraft, Geometrische Methoden in der Invariantentheorie, Aspects Math., D1, Vieweg, Braunschweig, 1984 | MR | MR | Zbl | Zbl

[8] G. Mazzola, “The algebraic and geometric classification of associative algebras of dimension five”, Manuscripta Math., 27:1 (1979), 81–101 | DOI | MR | Zbl

[9] A. A. Kirillov, Yu. A. Neretin, “Mnogoobraziya struktur $n$-mernykh algebr Li”, Nekotorye voprosy sovremennogo analiza, Izd-vo Mosk. un-ta, M., 1984, 42–56 | MR

[10] R. Carles, “Sur certaines classes d'orbites ouvertes dans les variétés d'algèbres de Lie”, C. R. Acad. Sci. Paris Sér. I Math., 293:11 (1981), 545–547 | MR | Zbl

[11] E. B. Vinberg, V. V. Gorbatsevich, A. L. Onischik, “Stroenie grupp i algebr Li”, Gruppy Li i algebry Li – 3, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 41, VINITI, M., 1990 | MR | Zbl

[12] V. V. Gorbatsevich, “On the level of some solvable Lie algebras”, Siberian Math. J., 39:5 (1998), 872–883 | DOI | MR | Zbl

[13] N. Bourbaki, Éléments de mathématique., Fasc. XXXVIII: Groupes et algèbres de Lie. Chapitre VII–VIII, Hermann, Paris, 1975 | MR | MR | Zbl

[14] K. H. Hofmann, “Lie algebras with subalgebras of co-dimension one”, Illinois J. Math., 9:4 (1965), 636–643 | MR | Zbl

[15] R. Carles, Y. Diakité, “Sur les variétés d' algèbres de Lie de dimension $\leq 7$”, J. Algebra, 91:1 (1984), 53–63 | DOI | MR | Zbl

[16] G. Rauch, “Effacement et déformation”, Ann. Inst. Fourier (Grenoble), 22:1 (1972), 239–269 | MR | Zbl

[17] M. Goze, Yu. Khakimdjanov, “Nilpotent and solvable Lie algebras”, Handbook of algebra, vol. 2, North-Holland, Amsterdam, 2000, 615–663 | MR | Zbl