Stability of a supersonic flow about a wedge with weak shock wave
Sbornik. Mathematics, Tome 200 (2009) no. 2, pp. 157-184 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is known that the problem of finding the streamlines of a stationary supersonic flow of a nonviscous nonheat-conducting gas in thermodynamical equilibrium past an infinite plane wedge (with a sufficiently small angle at the vertex) in theory has two solutions: a strong shock wave solution (the velocity behind the front of the shock wave is subsonic) and a weak shock wave solution (the velocity behind the front of the shock wave is generally speaking supersonic). In the present paper it is shown for a linear approximation to this problem that the weak shock wave solution is asymptotically stable in the sense of Lyapunov. Moreover, it is shown that for initial data with compact support the solution of the mixed linear problem converges in finite time to the zero solution. In the case of linear approximation these results complete the verification of the well-known Courant-Friedrichs conjecture that the strong shock wave solution is unstable, whereas the weak shock wave solution is asymptotically stable in the sense of Lyapunov. Bibliography: 39 titles.
Keywords: weak shock wave, asymptotic stability (in the sense of Lyapunov).
@article{SM_2009_200_2_a0,
     author = {A. M. Blokhin and D. L. Tkachev},
     title = {Stability of a~supersonic flow about a~wedge with weak shock wave},
     journal = {Sbornik. Mathematics},
     pages = {157--184},
     year = {2009},
     volume = {200},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_2_a0/}
}
TY  - JOUR
AU  - A. M. Blokhin
AU  - D. L. Tkachev
TI  - Stability of a supersonic flow about a wedge with weak shock wave
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 157
EP  - 184
VL  - 200
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_2_a0/
LA  - en
ID  - SM_2009_200_2_a0
ER  - 
%0 Journal Article
%A A. M. Blokhin
%A D. L. Tkachev
%T Stability of a supersonic flow about a wedge with weak shock wave
%J Sbornik. Mathematics
%D 2009
%P 157-184
%V 200
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2009_200_2_a0/
%G en
%F SM_2009_200_2_a0
A. M. Blokhin; D. L. Tkachev. Stability of a supersonic flow about a wedge with weak shock wave. Sbornik. Mathematics, Tome 200 (2009) no. 2, pp. 157-184. http://geodesic.mathdoc.fr/item/SM_2009_200_2_a0/

[1] R. Courant, K. O. Friedrichs, Supersonic flow and shock waves, Intersci. Publ., New York, 1948 | MR | Zbl

[2] L. V. Ovsyannikov, Lektsii po osnovam gazovoi dinamiki, In-t kompyuternykh issledovanii, Moskva–Izhevsk, 2003 | MR | Zbl

[3] G. G. Chernyi, Gazovaya dinamika, Nauka, M., 1988

[4] M. D. Salas, B. D. Morgan, “Stability of shock waves attached to wedges and cones”, AIAA J., 21:12 (1983), 1611–1617 | DOI | Zbl

[5] A. N. Lyubimov, V. V. Rusanov, Techenie gazov okolo tupykh tel, t. 1, 2, Nauka, M., 1970 | Zbl

[6] V. Elling, T.-P. Liu, “Exact solutions to supersonic flow onto a solid wedge”, Hyperbolic problems. Theory, numerics and applications, Proceedings of the 11th international conference on hyperbolic problems (Ecole Normale Supérieure, Lyon, France, 2006), Springer-Verlag, Berlin, 2008, 101–112 | Zbl

[7] A. I. Rylov, “On the possible modes of flow round tapered bodies of finite thickness at arbitrary supersonic velocities of the approach stream”, J. Appl. Math. Mech., 55:1 (1991), 78–85 | DOI | MR | Zbl

[8] A. A. Nikolskii, “O ploskikh vikhrevykh techeniyakh gaza”, Teor. issl. po mekhanike zhidkosti i gaza. Tr. TsAGI, 2122 (1984), 74–85

[9] B. M. Bulakh, Nonlinear conical flow, Delft Univ. Press, Delft, 1985 | MR | Zbl | Zbl

[10] B. L. Rozhdestvenskii, “Utochnenie teorii obtekaniya klina sverkhzvukovym potokom nevyazkogo gaza”, Matem. modelirovanie, 1:8 (1989), 99–102 | Zbl

[11] A. M. Blokhin, E. I. Romenskii, “Ustoichivost predelnogo statsionarnogo resheniya pri obtekanii krugovogo konusa”, Izv. SO AN SSSR. Ser. tekhn. nauk, 3:13 (1978), 87–97

[12] A. M. Blokhin, E. I. Romenskii, “Vliyanie svoistv predelnogo statsionarnogo resheniya na ego ustanovlenie”, Izv. SO AN SSSR. Ser. tekhn. nauk, 1:3 (1980), 44–50 | MR

[13] V. V. Rusanov, A. A. Sharakshane, Issledovanie linearizovannoi nestatsionarnoi modeli obtekaniya beskonechnogo klina, preprint No 13, IPM im. M. V. Keldysha RAN, M., 1980

[14] A. M. Blokhin, Integraly energii i ikh prilozheniya k zadacham gazovoi dinamiki, Nauka, Novosibirsk, 1986 | MR

[15] A. M. Blokhin, D. L. Tkachev, L. O. Baldan, “Study of the stability in the problem on flowing around a wedge. The case of strong wave”, J. Math. Anal. Appl., 319:1 (2006), 248–277 | DOI | MR | Zbl

[16] A. M. Blokhin, D. L. Tkachev, Yu. Yu. Pashinin, “Stability condition for strong shock waves in the problem of flow around an infinite plane wedge”, Nonlinear Anal. Hybrid Syst., 2:1 (2008), 1–17 | DOI | MR

[17] D. L. Tkachev, A. M. Blokhin, Yu. Yu. Pashinin, “The strong shock wave in the problem on flow around infinite plane wedge”, Hyperbolic problems. Theory, numerics and applications, Proceedings of the 11th international conference on hyperbolic problems (Ecole Normale Supérieure, Lyon, France, 2006), Springer-Verlag, Berlin, 2008, 1037–1044 | Zbl

[18] D. L. Tkachev, “Mixed problem for the wave equation in a quadrant”, Siberian J. Differential Equations, 1:3 (1997), 269–283 | MR

[19] A. M. Blokhin, D. L. Tkachev, Mixed problems for the wave equation in coordinate domains, Nova Science Publ., Commack, NY, 1998 | MR | Zbl

[20] A. M. Blokhin, “Well-posedness of a linear mixed problem on the supersonic flow around a wedge”, Siberian Math. J., 29:5 (1988), 726–734 | DOI | MR | Zbl

[21] A. M. Blokhin, A. D. Birkin, “Stability analysis of steady supersonic flow regimes past infinite wedge”, J. Appl. Mech. Tech. Phys., 36:2 (1995), 308–321 | DOI | MR | Zbl

[22] Shi-I. Bai, Vvedenie v teoriyu techeniya szhimaemoi zhidkosti, IL, M., 1962

[23] R. Sakamoto, Hyperbolic boundary value problems, Iwanami Shoten, Tokyo, 1978 | MR | Zbl

[24] A. N. Tikhonov, A. A. Samarskii, Equations of mathematical physics, Macmillan, New York; Pergamon Press, Oxford, 1963 | MR | MR | Zbl | Zbl

[25] V. S. Vladimirov, Equations of mathematical physics, Dekker, New York, 1971 | MR | MR | Zbl | Zbl

[26] S. V. Iordanskii, “Ob ustoichivosti statsionarnoi udarnoi volny”, PMM, 21:4 (1957), 465–472 | MR

[27] M. Abramowitz, I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, Wiley, New York, 1972 | MR | Zbl

[28] V. S. Vladimirov, Generalized functions in mathematical physics, Mir, Moscow, 1979 | MR | MR | Zbl | Zbl

[29] L. Schwartz, Théorie des distributions, tome I–II, Hermann Cie, Paris, 1950–1951 | MR | MR | Zbl

[30] G. A. Korn, T. M. Korn, Mathematical handbook for scientists and engineers, McGraw-Hill, New York–Toronto, ON–London, 1961 | MR | MR | Zbl | Zbl

[31] St. Osher, “Initial-boundary value problems for hyperbolic systems in regions with corners. II”, Trans. Amer. Math. Soc., 198 (1974), 155–175 | DOI | MR | Zbl

[32] J. Hadamard, Le problème de Cauchy et les équations aux dérivées partielles linéaires hyperboliques, Hermann Cie, Paris, 1932 | Zbl

[33] S. K. Godunov, Uravneniya matematicheskoi fiziki, Nauka, M., 1979 | MR | Zbl

[34] S. P. Dyakov, “Ob ustoichivosti udarnykh voln”, ZhETF, 27:3 (1954), 288–295 | MR | Zbl

[35] M. Ikawa, “Mixed problem for the wave equation with an oblique derivative boundary condition”, Osaka J. Math., 7:2 (1970), 495–525 | MR | Zbl

[36] L. Cagniard, Reflection and refraction of progressive seismic waves, McGraw-Hill, New York, 1962 | Zbl

[37] A. T. de Hoop, “A modification of Cagniard's method for solving seismic pulse problems”, Appl. Sci. Res. B, 8:1 (1960), 349–356 | DOI | MR | Zbl

[38] V. A. Dobrushkin, Kraevye zadachi dinamicheskoi teorii uprugosti dlya klinovidnykh oblastei, Nauka i tekhnika, Minsk, 1988 | MR | Zbl

[39] L. Hörmander, Linear partial differential operators, Academic Press, New York; Springer-Verlag, Berlin–Göttingen–Heidelberg, 1963 | MR | MR | Zbl | Zbl