The basis property of the Legendre polynomials in the variable
Sbornik. Mathematics, Tome 200 (2009) no. 1, pp. 133-156 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper looks at the problem of determining the conditions on a variable exponent $p=p(x)$ so that the orthonormal system of Legendre polynomials $\{\widehat P_n(x)\}_{n=0}^\infty$ is a basis in the Lebesgue space $L^{p(x)}(-1,1)$ with norm $$ \|f\|_{p(\,\cdot\,)}=\inf\biggl\{\alpha>0: \int_{-1}^1\biggl|{\frac{f(x)}{\alpha}}\biggr|^{p(x)}\,dx \le1\biggr\}. $$ Conditions on the exponent $p=p(x)$, that are definitive in a certain sense, are obtained and guarantee that the system $\{\widehat P_n(x)\}_{n=0}^\infty$ has the basis property in $L^{p(x)}(-1,1)$. Bibliography: 31 titles.
Keywords: variable exponent, basis.
Mots-clés : Lebesgue space, Legendre polynomial
@article{SM_2009_200_1_a4,
     author = {I. I. Sharapudinov},
     title = {The basis property of the {Legendre} polynomials in the variable},
     journal = {Sbornik. Mathematics},
     pages = {133--156},
     year = {2009},
     volume = {200},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_1_a4/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
TI  - The basis property of the Legendre polynomials in the variable
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 133
EP  - 156
VL  - 200
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_1_a4/
LA  - en
ID  - SM_2009_200_1_a4
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%T The basis property of the Legendre polynomials in the variable
%J Sbornik. Mathematics
%D 2009
%P 133-156
%V 200
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2009_200_1_a4/
%G en
%F SM_2009_200_1_a4
I. I. Sharapudinov. The basis property of the Legendre polynomials in the variable. Sbornik. Mathematics, Tome 200 (2009) no. 1, pp. 133-156. http://geodesic.mathdoc.fr/item/SM_2009_200_1_a4/

[1] I. I. Sharapudinov, “Topology of the space $\mathscr L^{p(t)}([0,1])$”, Math. Notes, 26:4 (1979), 796–806 | DOI | MR | Zbl

[2] W. Orlicz, “Über konjugierte Exponentenfolgen”, Studia Math., 3 (1931), 200–211 | Zbl

[3] H. Nakano, Modulared semi-ordered linear spaces, Maruzen, Tokyo, 1950 | MR | Zbl

[4] H. Nakano, Topology and topological linear spaces, Maruzen, Tokyo, 1951

[5] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math., 1034, Springer-Verlag, Berlin, 1983 | DOI | MR | Zbl

[6] J. Musielak, W. Orlicz, “On modular spaces”, Studia Math., 18 (1959), 49–65 | MR | Zbl

[7] I. V. Tsenov, “Generalization of the problem of best approximation of a function in the space $L^s$”, Uch. Zap. Dagestan Gos. Univ., 7 (1961), 25–37

[8] I. I. Sharapudinov, “Priblizhenie funktsii v metrike prostranstva $\mathscr L^{p(t)}([a,b])$ i kvadraturnye formuly”, Constructive function theory, Procedings of the international conference (Varna, 1981), Publ. House Bulgar. Acad. Sci., Sofia, 1983, 189–193 | MR | Zbl

[9] I. I. Sharapudinov, “On the basis property of the Haar system in the space $\mathscr L^{p(t)}([0,1])$ and the principle of localization in the mean”, Math. USSR-Sb., 58:1 (1987), 279–287 | DOI | MR | Zbl

[10] I. I. Sharapudinov, “Uniform boundedness in $L^p$ $(p=p(x))$ of some families of convolution operators”, Math. Notes, 59:2 (1996), 205–212 | DOI | MR | Zbl

[11] I. I. Sharapudinov, “Nekotorye voprosy teorii priblizheniya v prostranstvakh $L^{p(x)}(E)$”, Anal. Math., 33:2 (2007), 135–153 | DOI | MR | Zbl

[12] I. I. Sharapudinov, “Several questions of the approximation theory of functions in spaces $L^{p(x)}(E)$”, Abstracts of 6th International ISAAC Congress (Metu University, Ancara, Turkey, 2007), 85

[13] V. V. Zhikov, “Averaging of functionals of the calculus of variations and elasticity theory”, Math. USSR-Izv., 29:1 (1987), 33–66 | DOI | MR | Zbl

[14] V. V. Zhikov, “Meyer-type estimates for solving the nonlinear Stokes system”, Differential Equations, 33:1 (1997), 108–115 | MR | Zbl

[15] V. V. Zhikov, “On some variational problems”, Russian J. Math. Phys., 5:1 (1997), 105–116 | MR | Zbl

[16] V. V. Zhikov, S. E. Pastukhova, “O povyshennoi summiruemosti gradienta reshenii ellipticheskikh uravnenii s peremennym pokazatelem nelineinosti”, Matem. sb., 199:12 (2008), 19–52

[17] V. V. Zhikov, S. E. Pastukhova, “On the Trotter–Kato theorem in a variable space”, Funct. Anal. Appl., 41:4 (2007), 264–270 | DOI | MR | Zbl

[18] L. Diening, M. Rŭžička, “Calderón–Zygmund operators on generalized Lebesgue spaces $L^{p(\cdot)}$ and problems related to fluid dynamics”, J. Reine Angew. Math., 563 (2003), 197–220 | DOI | MR | Zbl

[19] V. Kokilashvili, S. Samko, “Singular integrals in weighted Lebesgue spaces with variable exponent”, Georgian Math. J., 10:1 (2003), 145–156 | MR | Zbl

[20] L. Diening, P. Hästö, A. Nekvinda, “Open problems in variable exponent Lebesgue and Sobolev spaces”, Function spaces, differential operators and nonlinear analysis, Proceedings of the Conference held in Milovy (Bohemian–Moravian Uplands, 2004), Math. Inst. Acad. Sci. Czech Republick, Praha

[21] G. Szegő, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, Amer. Math. Soc., Providence, RI, 1959 | MR | Zbl | Zbl

[22] I. I. Sharapudinov, “Approksimativnye svoistva srednikh tipa Valle–Pussena chastichnykh summ smeshannogo ryada po polinomam Lezhandra”, Matem. zametki, 84:3 (2008), 452–471

[23] H. Pollard, “The mean convergence of orthogonal series. I”, Trans. Amer. Math. Soc., 62:3 (1947), 387–403 | DOI | MR | Zbl

[24] H. Pollard, “The mean convergence of orthogonal series. II”, Trans. Amer. Math. Soc., 63:2 (1948), 355–367 | DOI | MR | Zbl

[25] H. Pollard, “The mean convergence of orthogonal series. III”, Duke Math. J., 16:1 (1949), 189–191 | DOI | MR | Zbl

[26] J. Newman, W. Rudin, “Mean convergence of orthogonal series”, Proc. Amer. Math. Soc., 3:2 (1952), 219–222 | DOI | MR | Zbl

[27] B. Muckenhoupt, “Mean convergence of Jacobi series”, Proc. Amer. Math. Soc., 23:2 (1969), 306–310 | DOI | MR | Zbl

[28] B. Muckenhoupt, “Mean convergence of Hermite and Laguerre series. I”, Trans. Amer. Math. Soc., 147:2 (1970), 419–431 | DOI | MR | Zbl

[29] B. Muckenhoupt, “Mean convergence of Hermite and Laguerre series. II”, Trans. Amer. Math. Soc., 147:2 (1970), 433–460 | DOI | MR | Zbl

[30] V. M. Badkov, “Approximation properties of fourier series in orthogonal polynomials”, Russian Math. Surveys, 33:4 (1978), 53–117 | DOI | MR | Zbl | Zbl

[31] P. K. Suetin, Klassicheskie ortogonalnye mnogochleny, Fizmatlit, M., 2007 | MR | Zbl