Mots-clés : Kähler-Einstein metric, Tian alpha-invariant.
@article{SM_2009_200_1_a3,
author = {I. A. Cheltsov},
title = {Extremal metrics on two {Fano} varieties},
journal = {Sbornik. Mathematics},
pages = {95--132},
year = {2009},
volume = {200},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2009_200_1_a3/}
}
I. A. Cheltsov. Extremal metrics on two Fano varieties. Sbornik. Mathematics, Tome 200 (2009) no. 1, pp. 95-132. http://geodesic.mathdoc.fr/item/SM_2009_200_1_a3/
[1] J. Kollár, “Singularities of pairs”, Algebraic geometry, Proceedings of the Summer Research Institute (Santa Cruz, CA, USA, 1995), Proc. Sympos. Pure Math., 62, Amer. Math. Soc., Providence, RI, 1997, 221–287 | MR | Zbl
[2] V. V. Shokurov, “3-fold log flips”, Russian Acad. Sci. Izv. Math., 40:1 (1993), 95–202 | DOI | MR | Zbl
[3] G. Tian, “On Kähler–Einstein metrics on certain Kähler manifolds with $C_1(M)>0$”, Invent. Math., 89:2 (1987), 225–246 | DOI | MR | Zbl
[4] I. A. Cheltsov, “Log canonical thresholds on hypersurfaces”, Sb. Math., 192:8 (2001), 1241–1257 | DOI | MR | Zbl
[5] I. A. Cheltsov, “Double spaces with isolated singularities”, Sb. Math., 199:2 (2008), 291–306 | DOI | MR
[6] J.-M. Hwang, “Log canonical thresholds of divisors on Fano manifolds of Picard number 1”, Compos. Math., 143:1 (2007), 89–94 | DOI | MR | Zbl
[7] A. V. Pukhlikov, “Birational geometry of Fano direct products”, Izv. Math., 69:6 (2005), 1225–1255 | DOI | MR | Zbl
[8] I. Cheltsov, J. Park, J. Won, Log canonical thresholds of certain Fano hypersurfaces, arXiv: 0706.0751
[9] I. Cheltsov, Log canonical thresholds of del Pezzo surfaces, arXiv: math/0703175
[10] I. Cheltsov, On singular cubic surfaces, arXiv: 0706.2666
[11] G. Tian, “On a set of polarized Kähler metrics on algebraic manifolds”, J. Differential Geom., 32:1 (1990), 99–130 | MR | Zbl
[12] A. M. Nadel, “Multiplier ideal sheaves and Kähler–Einstein metrics of positive scalar curvature”, Ann. of Math. (2), 132:3 (1990), 549–596 | DOI | MR | Zbl
[13] J.-P. Demailly, J. Kollár, “Semi-continuity of complex singularity exponents and Kähler–Einstein metrics on Fano orbifolds”, Ann. Sci. École Norm. Sup. (4), 34:4 (2001), 525–556 | DOI | MR | Zbl
[14] T. Aubin, “Équations du type Monge–Ampère sur les variétés kählériennes compactes”, Bull. Sci. Math. (2), 102:1 (1978), 63–95 | MR | Zbl
[15] Sh.-T. Yau, “On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation, I”, Comm. Pure Appl. Math., 31:3 (1978), 339–411 | DOI | MR | Zbl
[16] Sh.-T. Yau, “Review on Kähler–Einstein metrics in algebraic geometry”, Proceedings of the Hirzebruch 65 conference on algebraic geometry (Bar-Ilan University, Ramat Gan, Israel, 1993), Israel Math. Conf. Proc., 9, Ramat Gan, Bar-Ilan Univ., 1996, 433–443 | MR | Zbl
[17] Y. Matsushima, “Sur la structure du groupe d'homéomorphismes analytiques d'une certaine variété kaehlérienne”, Nagoya Math. J., 11 (1957), 145–150 | MR | Zbl
[18] M. Lübke, “Stability of Einstein–Hermitian vector bundles”, Manuscripta Math., 42:2–3 (1983), 245–257 | DOI | MR | Zbl
[19] A. Futaki, “An obstruction to the existence of Einstein Kähler metrics”, Invent. Math., 73:3 (1983), 437–443 | DOI | MR | Zbl
[20] A. Steffens, “On the stability of the tangent bundle of Fano manifolds”, Math. Ann., 304:1 (1996), 635–643 | DOI | MR | Zbl
[21] G. Tian, “Kähler–Einstein metrics with positive scalar curvatur”, Invent. Math., 130:1 (1997), 1–37 | DOI | MR | Zbl
[22] S. K. Donaldson, A note on the $\alpha$-invariant of the Mukai–Umemura 3-fold, arXiv: 0711.4357
[23] T. Mabuchi, “Einstein–Kähler forms, Futaki invariants and convex geometry on toric Fano varieties”, Osaka J. Math., 24:4 (1987), 705–737 | MR | Zbl
[24] V. V. Batyrev, E. N. Selivanova, “Einstein–Kähler metrics on symmetric toric Fano manifolds”, J. Reine Angew. Math., 512 (1999), 225–236 | DOI | MR | Zbl
[25] X.-J. Wang, X. Zhu, “Kähler–Ricci solitons on toric manifolds with positive first Chern class”, Adv. Math., 188:1 (2004), 87–103 | DOI | MR | Zbl
[26] B. Nill, “Complete toric varieties with reductive automorphism group”, Math. Z., 252:4 (2006), 767–786 | DOI | MR | Zbl
[27] G. Tian, “On Calabi's conjecture for complex surfaces with positive first Chern class”, Invent. Math., 101:1 (1990), 101–172 | DOI | MR | Zbl
[28] C. Arezzo, A. Ghigi, G. P. Pirola, “Symmetries, quotients and Kähler–Einstein metrics”, J. Reine Angew. Math., 591 (2006), 177–200 | DOI | MR | Zbl
[29] W. Ding, G. Tian, “Kähler–Einstein metrics and the generalized Futaki invariant”, Invent. Math., 110:1 (1992), 315–335 | DOI | MR | Zbl
[30] J. M. Johnson, J. Kollár, “Kähler–Einstein metrics on log del Pezzo surfaces in weighted projective 3-spaces”, Ann. Inst. Fourier (Grenoble), 51:1 (2001), 69–79 | MR | Zbl
[31] Ch. P. Boyer, K. Galicki, M. Nakamaye, “Sasakian–Einstein structures on $9\#(S^2\times S^3)$”, Trans. Amer. Math. Soc., 354:8 (2002), 2983–2996 | DOI | MR | Zbl
[32] C. Araujo, “Kähler–Einstein metrics for some quasi-smooth log del Pezzo surfaces”, Trans. Amer. Math. Soc., 354:11 (2002), 4303–4312 | DOI | MR | Zbl
[33] J. M. Johnson, J. Kollár, “Fano hypersurfaces in weighted projective 4-spaces”, Experiment. Math., 10:1 (2001), 151–158 | MR | Zbl
[34] J. Park, “Birational maps of del Pezzo fibrations”, J. Reine Angew. Math., 538 (2001), 213–221 | DOI | MR | Zbl
[35] A. Corti, “Del Pezzo surfaces over Dedekind schemes”, Ann. of Math. (2), 144:3 (1996), 641–683 | DOI | MR | Zbl
[36] A. Corti, “Singularities of linear systems and 3-fold birational geometry”, Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 259–312 | MR | Zbl
[37] I. A. Cheltsov, “Birationally rigid Fano varieties”, Russian Math. Surveys, 60:5 (2005), 875–965 | DOI | MR | Zbl
[38] V. A. Iskovskih, Ju. I. Manin, “Three-dimensional quartics and counterexamples to the Lüroth problem”, Math. USSR-Sb., 15:1 (1971), 141–166 | DOI | MR | Zbl | Zbl
[39] A. V. Pukhlikov, “Birational automorphisms of Fano hypersurfaces”, Invent. Math., 134:2 (1998), 401–426 | DOI | MR | Zbl
[40] V. A. Iskovskikh, “Birational automorphisms of three-dimensional algebraic varieties”, J. Soviet Math., 13:6 (1980), 815–868 | DOI | MR | Zbl | Zbl
[41] A. V. Pukhlikov, “Birational automorphisms of a double space and double quadric”, Math. USSR-Izv., 32:1 (1988), 233–243 | DOI | MR | Zbl
[42] V. A. Iskovskikh, A. V. Pukhlikov, “Birational automorphisms of multidimensional algebraic manifolds”, J. Math. Sci., 82:4 (1996), 3528–3613 | DOI | MR | Zbl
[43] A. V. Pukhlikov, “Birationally rigid Fano hypersurfaces with isolated singularities”, Sb. Math., 193:3 (2002), 445–471 | DOI | MR | Zbl
[44] I. Cheltsov, “Fano varieties with many selfmaps”, Adv. Math., 217:1 (2008), 97–124 | DOI | MR | Zbl
[45] A. R. Iano-Fletcher, “Working with weighted complete intersections”, Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 101–173 | MR | Zbl
[46] A. Corti, A. Pukhlikov, M. Reid, “Fano 3-fold hypersurfaces”, Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 175–258 | MR | Zbl
[47] I. Cheltsov, J. Park, “Weighted Fano threefold hypersurfaces”, J. Reine Angew. Math., 600 (2006), 81–116 | DOI | MR | Zbl
[48] I. A. Cheltsov, “Log-kanonicheskie porogi i metriki Kelera–Einshteina na trekhmernykh giperpoverkhnostyakh Fano”, Izv. RAN. Ser. matem. (to appear)
[49] I. A. Cheltsov, “Elliptic structures on weighted three-dimensional Fano hypersurfaces”, Izv. Math., 71:4 (2007), 765–862 | DOI | MR | Zbl