Strong asymptotics of polynomials orthogonal with respect to
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 200 (2009) no. 1, pp. 77-93
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For polynomials orthogonal with respect to a complex-valued weight on the closed interval
$\Delta=[-1,1]$ a strong asymptotic formula in a neighbourhood of $\Delta$ is obtained. In particular, for the
‘trigonometric’ weight $\rho_0(x)=e^{ix}$, $x\in\Delta$, this formula yields a description of the
asymptotic behaviour of each of the $n$ zeros of the $n$th orthogonal polynomial as $n\to\infty$.
This strong asymptotic formula is deduced on the basis of Nuttall's singular integral equation.
Bibliography: 28 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
strong asymptotics.
Mots-clés : Padé approximants, orthogonal polynomials
                    
                  
                
                
                Mots-clés : Padé approximants, orthogonal polynomials
@article{SM_2009_200_1_a2,
     author = {S. P. Suetin},
     title = {Strong asymptotics of polynomials orthogonal with respect to},
     journal = {Sbornik. Mathematics},
     pages = {77--93},
     publisher = {mathdoc},
     volume = {200},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_1_a2/}
}
                      
                      
                    S. P. Suetin. Strong asymptotics of polynomials orthogonal with respect to. Sbornik. Mathematics, Tome 200 (2009) no. 1, pp. 77-93. http://geodesic.mathdoc.fr/item/SM_2009_200_1_a2/
