Strong asymptotics of polynomials orthogonal with respect to
Sbornik. Mathematics, Tome 200 (2009) no. 1, pp. 77-93

Voir la notice de l'article provenant de la source Math-Net.Ru

For polynomials orthogonal with respect to a complex-valued weight on the closed interval $\Delta=[-1,1]$ a strong asymptotic formula in a neighbourhood of $\Delta$ is obtained. In particular, for the ‘trigonometric’ weight $\rho_0(x)=e^{ix}$, $x\in\Delta$, this formula yields a description of the asymptotic behaviour of each of the $n$ zeros of the $n$th orthogonal polynomial as $n\to\infty$. This strong asymptotic formula is deduced on the basis of Nuttall's singular integral equation. Bibliography: 28 titles.
Keywords: strong asymptotics.
Mots-clés : Padé approximants, orthogonal polynomials
@article{SM_2009_200_1_a2,
     author = {S. P. Suetin},
     title = {Strong asymptotics of polynomials orthogonal with respect to},
     journal = {Sbornik. Mathematics},
     pages = {77--93},
     publisher = {mathdoc},
     volume = {200},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_1_a2/}
}
TY  - JOUR
AU  - S. P. Suetin
TI  - Strong asymptotics of polynomials orthogonal with respect to
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 77
EP  - 93
VL  - 200
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_1_a2/
LA  - en
ID  - SM_2009_200_1_a2
ER  - 
%0 Journal Article
%A S. P. Suetin
%T Strong asymptotics of polynomials orthogonal with respect to
%J Sbornik. Mathematics
%D 2009
%P 77-93
%V 200
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2009_200_1_a2/
%G en
%F SM_2009_200_1_a2
S. P. Suetin. Strong asymptotics of polynomials orthogonal with respect to. Sbornik. Mathematics, Tome 200 (2009) no. 1, pp. 77-93. http://geodesic.mathdoc.fr/item/SM_2009_200_1_a2/