Some properties of singular hyperbolic attractors
Sbornik. Mathematics, Tome 200 (2009) no. 1, pp. 35-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The definition of a singular hyperbolic attractor was given in a paper by Morales, Pacifico, and Pujals in 1998. A similar definition was given by Turaev and Shil'nikov in 1998. This definition was motivated on the one hand by the well-known Lorenz model, and on the other hand by the definition of a hyperbolic attractor. We prove certain properties of singular hyperbolic attractors, which are subsequently used to prove the existence of invariant measures of Sinaĭ-Bowen-Ruelle type. The main result of the paper is a proof of the existence of an invariant family of strong unstable spaces on a sufficiently representative set. Bibliography: 21 titles.
Keywords: singular hyperbolicity, stable manifolds, unstable spaces.
@article{SM_2009_200_1_a1,
     author = {E. A. Sataev},
     title = {Some properties of singular hyperbolic attractors},
     journal = {Sbornik. Mathematics},
     pages = {35--76},
     year = {2009},
     volume = {200},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_1_a1/}
}
TY  - JOUR
AU  - E. A. Sataev
TI  - Some properties of singular hyperbolic attractors
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 35
EP  - 76
VL  - 200
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_1_a1/
LA  - en
ID  - SM_2009_200_1_a1
ER  - 
%0 Journal Article
%A E. A. Sataev
%T Some properties of singular hyperbolic attractors
%J Sbornik. Mathematics
%D 2009
%P 35-76
%V 200
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2009_200_1_a1/
%G en
%F SM_2009_200_1_a1
E. A. Sataev. Some properties of singular hyperbolic attractors. Sbornik. Mathematics, Tome 200 (2009) no. 1, pp. 35-76. http://geodesic.mathdoc.fr/item/SM_2009_200_1_a1/

[1] C. A. Morales, M. J. Pacífico, E. R. Pujals, “On $C^1$ robust singular transitive sets for three-dimensional flows”, C. R. Acad. Sci. Paris Sér. I Math., 326:1 (1998), 81–86 | DOI | MR | Zbl

[2] E. N. Lorenz, “Deterministic nonperiodic flow”, J. Atmospheric Sci., 20:2 (1963), 130–141 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[3] B. Saltzman, “Finite amplitude free convection as an initial value problem–I”, J. Atmospheric Sci., 19:4 (1962), 329–341 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[4] V. S. Afrajmovich, V. V. Bykov, L. P. Shil'nikov, “On structurally unstable attracting limit sets of Lorenz attractor type”, Trans. Moscow Math. Soc., 2 (1983), 153–216 | MR | Zbl | Zbl

[5] J. Guckenheimer, “A strange, strange attractor”, The Hopf bifurcation and its applications, Applied Math. Sciences, 19, Springer-Verlag, New York–Heidelberg–Berlin, 1976 | MR | Zbl

[6] J. Guckenheimer, R. F. Williams, “Structural stability of Lorenz attractors”, Inst. Hautes Études Sci. Publ. Math., 50:1 (1979), 59–72 | DOI | MR | Zbl

[7] D. V. Turaev, L. P. Shil'nikov, “An example of a wild strange attractor”, Sb. Math., 189:2 (1998), 291–314 | DOI | MR | Zbl

[8] L. Shilnikov, “Bifurcations and strange attractors”, Proceedings of the International Congress of Mathematicians, vol. III: Invited lectures (Beijing, China, 2002), Higher Education Press, Beijing, 2002, 349–372 ; arXiv: math.DS/0304457 | MR | Zbl

[9] E. A. Sataev, “Non-existence of stable trajectories in non-autonomous perturbations of systems of Lorenz type”, Sb. Math., 196:4 (2005), 561–594 | DOI | MR | Zbl

[10] L. J. Díaz, E. R. Pujals, R. Ures, “Partial hyperbolicity and robust transitivity”, Acta Math., 183:1 (1999), 1–43 | DOI | MR | Zbl

[11] C. A. Morales, M. J. Pacifico, E. R. Pujals, “Singular hyperbolic systems”, Proc. Amer. Math. Soc., 127:11 (1999), 3393–3401 | DOI | MR | Zbl

[12] C. A. Morales, M. J. Pacifico, E. R. Pujals, “Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers”, Ann. of Math. (2), 160:2 (2004), 375–432 | DOI | MR | Zbl

[13] C. A. Morales, M. J. Pacifico, “Mixing attractors for 3-flows”, Nonlinearity, 14:2 (2001), 359–378 | DOI | MR | Zbl

[14] C. A. Morales, M. J. Pacifico, E. R. Pujals, “Strange attractors across the boundary of hyperbolic systems”, Comm. Math. Phys., 211:3 (2000), 527–558 | DOI | MR | Zbl

[15] C. A. Morales, M. J. Pacifico, “A dichotomy for three-dimensional vector fields”, Ergodic Theory Dynam. Systems, 23:5 (2003), 1575–1600 | DOI | MR | Zbl

[16] C. M. Carballo, C. A. Morales, M. J. Pacifico, “Homoclinic classes for generic $C^1$ vector fields”, Ergodic Theory Dynam. Systems, 23:2 (2003), 403–415 | DOI | MR | Zbl

[17] M. J. Pacifico, E. R. Pujals, J. L. Vieitez, “Robustly expansive homoclinic classes”, Ergodic Theory Dynam. Systems, 25:1 (2005), 271–300 | DOI | MR | Zbl

[18] E. A. Sataev, “Invariantnye mery dlya singulyarno giperbolicheskikh attraktorov”, Tezisy dokladov mezhdunarodnoi konferentsii “Differentsialnye uravneniya i smezhnye voprosy” (Moskva, 2007), Izd-vo Mosk. un-ta, M., 2007, 275–276

[19] D. V. Anosov, Geodesic flows on closed Riemann manifolds with negative curvature, Proc. Steklov Inst. Math., 90, Amer. Math. Soc., Providence, RI, 1969 | MR | MR | Zbl | Zbl

[20] M. W. Hirsch, C. C. Pugh, M. Shub, Invariant manifolds, Lecture Notes in Math., 583, Springer-Verlag, Berlin–Heidelberg–New York, 1977 | DOI | MR | Zbl

[21] Ph. Hartman, Ordinary differential equations, Wiley, New York–London–Sydney, 1964 | MR | MR | Zbl | Zbl