The isoperimetric inequality on conformally parabolic manifolds
Sbornik. Mathematics, Tome 200 (2009) no. 1, pp. 1-33

Voir la notice de l'article provenant de la source Math-Net.Ru

For non-compact Riemannian manifolds without boundary the following conjecture is proved: on a Riemannian manifold of conformally parabolic type, after a conformal change of the metric the isoperimetric function (responsible for the isoperimetric inequality) can be transformed into the same form as in the case of the Euclidean space of the corresponding dimension. Bibliography: 8 titles.
Keywords: Riemannian manifold, conformal type of a manifold, conformal metrics, conformal capacity, isoperimetric function.
@article{SM_2009_200_1_a0,
     author = {V. M. Kesel'man},
     title = {The isoperimetric inequality on conformally parabolic manifolds},
     journal = {Sbornik. Mathematics},
     pages = {1--33},
     publisher = {mathdoc},
     volume = {200},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_1_a0/}
}
TY  - JOUR
AU  - V. M. Kesel'man
TI  - The isoperimetric inequality on conformally parabolic manifolds
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 1
EP  - 33
VL  - 200
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_1_a0/
LA  - en
ID  - SM_2009_200_1_a0
ER  - 
%0 Journal Article
%A V. M. Kesel'man
%T The isoperimetric inequality on conformally parabolic manifolds
%J Sbornik. Mathematics
%D 2009
%P 1-33
%V 200
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2009_200_1_a0/
%G en
%F SM_2009_200_1_a0
V. M. Kesel'man. The isoperimetric inequality on conformally parabolic manifolds. Sbornik. Mathematics, Tome 200 (2009) no. 1, pp. 1-33. http://geodesic.mathdoc.fr/item/SM_2009_200_1_a0/