The isoperimetric inequality on conformally parabolic manifolds
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 200 (2009) no. 1, pp. 1-33
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For non-compact Riemannian manifolds without boundary the following
conjecture is proved: on a Riemannian manifold of conformally parabolic
type, after a conformal change of the metric the isoperimetric function
(responsible for the isoperimetric inequality) can be
transformed into the same form as in the case of the Euclidean space of
the corresponding dimension.
Bibliography: 8 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Riemannian manifold, conformal type of a manifold, conformal metrics, conformal capacity, isoperimetric function.
                    
                    
                    
                  
                
                
                @article{SM_2009_200_1_a0,
     author = {V. M. Kesel'man},
     title = {The isoperimetric inequality on conformally parabolic manifolds},
     journal = {Sbornik. Mathematics},
     pages = {1--33},
     publisher = {mathdoc},
     volume = {200},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_1_a0/}
}
                      
                      
                    V. M. Kesel'man. The isoperimetric inequality on conformally parabolic manifolds. Sbornik. Mathematics, Tome 200 (2009) no. 1, pp. 1-33. http://geodesic.mathdoc.fr/item/SM_2009_200_1_a0/
