The isoperimetric inequality on conformally parabolic manifolds
Sbornik. Mathematics, Tome 200 (2009) no. 1, pp. 1-33 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For non-compact Riemannian manifolds without boundary the following conjecture is proved: on a Riemannian manifold of conformally parabolic type, after a conformal change of the metric the isoperimetric function (responsible for the isoperimetric inequality) can be transformed into the same form as in the case of the Euclidean space of the corresponding dimension. Bibliography: 8 titles.
Keywords: Riemannian manifold, conformal type of a manifold, conformal metrics, conformal capacity, isoperimetric function.
@article{SM_2009_200_1_a0,
     author = {V. M. Kesel'man},
     title = {The isoperimetric inequality on conformally parabolic manifolds},
     journal = {Sbornik. Mathematics},
     pages = {1--33},
     year = {2009},
     volume = {200},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_1_a0/}
}
TY  - JOUR
AU  - V. M. Kesel'man
TI  - The isoperimetric inequality on conformally parabolic manifolds
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 1
EP  - 33
VL  - 200
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_1_a0/
LA  - en
ID  - SM_2009_200_1_a0
ER  - 
%0 Journal Article
%A V. M. Kesel'man
%T The isoperimetric inequality on conformally parabolic manifolds
%J Sbornik. Mathematics
%D 2009
%P 1-33
%V 200
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2009_200_1_a0/
%G en
%F SM_2009_200_1_a0
V. M. Kesel'man. The isoperimetric inequality on conformally parabolic manifolds. Sbornik. Mathematics, Tome 200 (2009) no. 1, pp. 1-33. http://geodesic.mathdoc.fr/item/SM_2009_200_1_a0/

[1] V. M. Kesel'man, “On the isoperimetric inequality on conformally parabolic manifolds”, Russian Math. Surveys, 62:6 (2007), 1210–1211 | DOI | MR | Zbl

[2] V. A. Zorich, V. M. Kesel'man, “The isoperimetric inequality on manifolds of conformally hyperbolic type”, Funct. Anal. Appl., 35:2 (2001), 90–99 | DOI | MR | Zbl

[3] V. M. Kesel'man, “Isoperimetric inequality on conformally hyperbolic manifolds”, Sb. Math., 194:4 (2003), 495–513 | DOI | MR | Zbl

[4] V. A. Zorich, V. M. Kesel'man, “On the conformal type of a Riemannian manifold”, Funct. Anal. Appl., 30:2 (1996), 106–117 | DOI | MR | Zbl

[5] D. Gromoll, W. Klingenberg, W. Meyer, Riemannsche Geometrie im Grossen, Lecture Notes in Math., 55, Springer-Verlag, Berlin–New York, 1968 | DOI | MR | Zbl

[6] V. A. Zorich, “The global homeomorphism theorem for space quasiconformal mappings, its development and related open problems”, Quasiconformal space mappings, Lecture Notes in Math., 1508, Springer-Verlag, Berlin, 1992, 132–148 | DOI | MR | Zbl

[7] R. Grimaldi, P. Pansu, “Sur la croissance du volume dans une classe conforme”, J. Math. Pures Appl. (9), 71:1 (1992), 1–19 | MR | Zbl

[8] Yu. D. Burago, V. A. Zalgaller, Geometric inequalities, Grundlehren Math. Wiss., 285, Springer-Verlag, Berlin, 1988 | MR | MR | Zbl | Zbl