@article{SM_2009_200_1_a0,
author = {V. M. Kesel'man},
title = {The isoperimetric inequality on conformally parabolic manifolds},
journal = {Sbornik. Mathematics},
pages = {1--33},
year = {2009},
volume = {200},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2009_200_1_a0/}
}
V. M. Kesel'man. The isoperimetric inequality on conformally parabolic manifolds. Sbornik. Mathematics, Tome 200 (2009) no. 1, pp. 1-33. http://geodesic.mathdoc.fr/item/SM_2009_200_1_a0/
[1] V. M. Kesel'man, “On the isoperimetric inequality on conformally parabolic manifolds”, Russian Math. Surveys, 62:6 (2007), 1210–1211 | DOI | MR | Zbl
[2] V. A. Zorich, V. M. Kesel'man, “The isoperimetric inequality on manifolds of conformally hyperbolic type”, Funct. Anal. Appl., 35:2 (2001), 90–99 | DOI | MR | Zbl
[3] V. M. Kesel'man, “Isoperimetric inequality on conformally hyperbolic manifolds”, Sb. Math., 194:4 (2003), 495–513 | DOI | MR | Zbl
[4] V. A. Zorich, V. M. Kesel'man, “On the conformal type of a Riemannian manifold”, Funct. Anal. Appl., 30:2 (1996), 106–117 | DOI | MR | Zbl
[5] D. Gromoll, W. Klingenberg, W. Meyer, Riemannsche Geometrie im Grossen, Lecture Notes in Math., 55, Springer-Verlag, Berlin–New York, 1968 | DOI | MR | Zbl
[6] V. A. Zorich, “The global homeomorphism theorem for space quasiconformal mappings, its development and related open problems”, Quasiconformal space mappings, Lecture Notes in Math., 1508, Springer-Verlag, Berlin, 1992, 132–148 | DOI | MR | Zbl
[7] R. Grimaldi, P. Pansu, “Sur la croissance du volume dans une classe conforme”, J. Math. Pures Appl. (9), 71:1 (1992), 1–19 | MR | Zbl
[8] Yu. D. Burago, V. A. Zalgaller, Geometric inequalities, Grundlehren Math. Wiss., 285, Springer-Verlag, Berlin, 1988 | MR | MR | Zbl | Zbl