The resonance spectrum of a Schr\"odinger operator with a rapidly decaying potential
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 200 (2009) no. 12, pp. 1847-1880
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Resonances of the one-dimensional Schrödinger operator are investigated, that is, the poles of the analytic extension of the corresponding scattering matrix. For a certain class of superexponentially decreasing potentials, including the Gaussian potential,  the Born approximation is substantiated for the problem of
localizing the poles of the scattering matrix. This makes it possible to find an asymptotic law (a quantization rule) for the distribution of these poles. For the first time, using the method developed in the paper, asymptotic
formulae for resonances are obtained in the case of potentials with noncompact support.
Bibliography: 15 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
resonance, pole of a scattering matrix, asymptotic distribution, Schrödinger operator, superexponentially decreasing potential.
                    
                    
                    
                  
                
                
                @article{SM_2009_200_12_a5,
     author = {S. A. Stepin and A. G. Tarasov},
     title = {The resonance spectrum of a {Schr\"odinger} operator with a rapidly decaying potential},
     journal = {Sbornik. Mathematics},
     pages = {1847--1880},
     publisher = {mathdoc},
     volume = {200},
     number = {12},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_12_a5/}
}
                      
                      
                    TY - JOUR AU - S. A. Stepin AU - A. G. Tarasov TI - The resonance spectrum of a Schr\"odinger operator with a rapidly decaying potential JO - Sbornik. Mathematics PY - 2009 SP - 1847 EP - 1880 VL - 200 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2009_200_12_a5/ LA - en ID - SM_2009_200_12_a5 ER -
S. A. Stepin; A. G. Tarasov. The resonance spectrum of a Schr\"odinger operator with a rapidly decaying potential. Sbornik. Mathematics, Tome 200 (2009) no. 12, pp. 1847-1880. http://geodesic.mathdoc.fr/item/SM_2009_200_12_a5/
