@article{SM_2009_200_12_a5,
author = {S. A. Stepin and A. G. Tarasov},
title = {The resonance spectrum of a {Schr\"odinger} operator with a rapidly decaying potential},
journal = {Sbornik. Mathematics},
pages = {1847--1880},
year = {2009},
volume = {200},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2009_200_12_a5/}
}
S. A. Stepin; A. G. Tarasov. The resonance spectrum of a Schrödinger operator with a rapidly decaying potential. Sbornik. Mathematics, Tome 200 (2009) no. 12, pp. 1847-1880. http://geodesic.mathdoc.fr/item/SM_2009_200_12_a5/
[1] V. de Alfaro, T. Regge, Potential scattering, North-Holland, Amsterdam, 1965 | MR | Zbl | Zbl
[2] A. I. Baz, Ya. B. Zeldovich, A. M. Perelomov, Rasseyanie, reaktsii i raspady v nerelyativistskoi kvantovoi mekhanike, Nauka, M., 1971
[3] R. B. Melrose, Geometric scattering theory, Stanford Lectures, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[4] M. Zworski, “Counting scattering poles”, Spectral and scattering theory (Sanda, Hyogo, Japan, 1992), Lecture Notes in Pure and Appl. Math., 161, Dekker, Basel–New York, 1994, 301–331 | MR | Zbl
[5] J. Sjöstrand, “A trace formula and review of some estimates for resonances”, Microlocal analysis and spectral theory (Lucca, Italy, 1996), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 490, Kluwer Acad. Publ., Dordrecht, 1997, 377–437 | MR | Zbl
[6] M. Zworski, “Sharp polynomial bounds on the number of scattering poles of radial potentials”, J. Funct. Anal., 82:2 (1989), 370–403 | DOI | MR | Zbl
[7] M. Zworski, “Sharp polynomial bounds on the number of scattering poles”, Duke Math. J., 59:2 (1989), 311–323 | DOI | MR | Zbl
[8] M. Zworski, “Distribution of poles for scattering on the real line”, J. Funct. Anal., 73:2 (1987), 277–296 | DOI | MR | Zbl
[9] S. A. Stepin, A. G. Tarasov, “Asymptotic distribution of resonances for one-dimensional Schrödinger operators with compactly supported potential”, Sb. Math., 198:12 (2007), 1787–1804 | DOI | MR | Zbl
[10] M. V. Fedoryuk, Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | MR | Zbl
[11] R. Froese, “Asymptotic distribution of resonances in one dimension”, J. Differential Equations, 137:2 (1997), 251–272 | DOI | MR | Zbl
[12] M. Sh. Birman, M. G. Krejn, “On the theory of wave operators and scattering operators”, Soviet Math. Dokl., 3 (1962), 740–744 | MR | Zbl
[13] B. Simon, “Resonances in one dimension and Fredholm determinants”, J. Funct. Anal., 178:2 (2000), 396–420 | DOI | MR | Zbl
[14] M. Hitrik, “Bounds on scattering poles in one dimension”, Comm. Math. Phys., 208:2 (1999), 381–411 | DOI | MR | Zbl
[15] M. V. Fedoryuk, Asimptotika: integraly i ryady, Nauka, M., 1987 | MR | Zbl