The resonance spectrum of a Schrödinger operator with a rapidly decaying potential
Sbornik. Mathematics, Tome 200 (2009) no. 12, pp. 1847-1880 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Resonances of the one-dimensional Schrödinger operator are investigated, that is, the poles of the analytic extension of the corresponding scattering matrix. For a certain class of superexponentially decreasing potentials, including the Gaussian potential, the Born approximation is substantiated for the problem of localizing the poles of the scattering matrix. This makes it possible to find an asymptotic law (a quantization rule) for the distribution of these poles. For the first time, using the method developed in the paper, asymptotic formulae for resonances are obtained in the case of potentials with noncompact support. Bibliography: 15 titles.
Keywords: resonance, pole of a scattering matrix, asymptotic distribution, Schrödinger operator, superexponentially decreasing potential.
@article{SM_2009_200_12_a5,
     author = {S. A. Stepin and A. G. Tarasov},
     title = {The resonance spectrum of a {Schr\"odinger} operator with a rapidly decaying potential},
     journal = {Sbornik. Mathematics},
     pages = {1847--1880},
     year = {2009},
     volume = {200},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_12_a5/}
}
TY  - JOUR
AU  - S. A. Stepin
AU  - A. G. Tarasov
TI  - The resonance spectrum of a Schrödinger operator with a rapidly decaying potential
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 1847
EP  - 1880
VL  - 200
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_12_a5/
LA  - en
ID  - SM_2009_200_12_a5
ER  - 
%0 Journal Article
%A S. A. Stepin
%A A. G. Tarasov
%T The resonance spectrum of a Schrödinger operator with a rapidly decaying potential
%J Sbornik. Mathematics
%D 2009
%P 1847-1880
%V 200
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2009_200_12_a5/
%G en
%F SM_2009_200_12_a5
S. A. Stepin; A. G. Tarasov. The resonance spectrum of a Schrödinger operator with a rapidly decaying potential. Sbornik. Mathematics, Tome 200 (2009) no. 12, pp. 1847-1880. http://geodesic.mathdoc.fr/item/SM_2009_200_12_a5/

[1] V. de Alfaro, T. Regge, Potential scattering, North-Holland, Amsterdam, 1965 | MR | Zbl | Zbl

[2] A. I. Baz, Ya. B. Zeldovich, A. M. Perelomov, Rasseyanie, reaktsii i raspady v nerelyativistskoi kvantovoi mekhanike, Nauka, M., 1971

[3] R. B. Melrose, Geometric scattering theory, Stanford Lectures, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[4] M. Zworski, “Counting scattering poles”, Spectral and scattering theory (Sanda, Hyogo, Japan, 1992), Lecture Notes in Pure and Appl. Math., 161, Dekker, Basel–New York, 1994, 301–331 | MR | Zbl

[5] J. Sjöstrand, “A trace formula and review of some estimates for resonances”, Microlocal analysis and spectral theory (Lucca, Italy, 1996), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 490, Kluwer Acad. Publ., Dordrecht, 1997, 377–437 | MR | Zbl

[6] M. Zworski, “Sharp polynomial bounds on the number of scattering poles of radial potentials”, J. Funct. Anal., 82:2 (1989), 370–403 | DOI | MR | Zbl

[7] M. Zworski, “Sharp polynomial bounds on the number of scattering poles”, Duke Math. J., 59:2 (1989), 311–323 | DOI | MR | Zbl

[8] M. Zworski, “Distribution of poles for scattering on the real line”, J. Funct. Anal., 73:2 (1987), 277–296 | DOI | MR | Zbl

[9] S. A. Stepin, A. G. Tarasov, “Asymptotic distribution of resonances for one-dimensional Schrödinger operators with compactly supported potential”, Sb. Math., 198:12 (2007), 1787–1804 | DOI | MR | Zbl

[10] M. V. Fedoryuk, Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | MR | Zbl

[11] R. Froese, “Asymptotic distribution of resonances in one dimension”, J. Differential Equations, 137:2 (1997), 251–272 | DOI | MR | Zbl

[12] M. Sh. Birman, M. G. Krejn, “On the theory of wave operators and scattering operators”, Soviet Math. Dokl., 3 (1962), 740–744 | MR | Zbl

[13] B. Simon, “Resonances in one dimension and Fredholm determinants”, J. Funct. Anal., 178:2 (2000), 396–420 | DOI | MR | Zbl

[14] M. Hitrik, “Bounds on scattering poles in one dimension”, Comm. Math. Phys., 208:2 (1999), 381–411 | DOI | MR | Zbl

[15] M. V. Fedoryuk, Asimptotika: integraly i ryady, Nauka, M., 1987 | MR | Zbl