Spectral multiplicities and asymptotic operator properties of actions with invariant measure
Sbornik. Mathematics, Tome 200 (2009) no. 12, pp. 1833-1845 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

New sets of spectral multiplicities of ergodic automorphisms of a probability space are proposed. Realizations have been obtained, inter alia, for the sets of multiplicities $\{p,q,pq\}$, $\{p,q,r,pq,pr,rq,pqr\}$ and so on. It is also shown that systems with homogeneous spectrum may have factors over which they form a finite extension. Moreover, these systems feature arbitrary polynomial limits, and thus may serve as useful elements in constructions. A so-called minimal calculus of multiplicities is proposed. Some infinite sets of multiplicities occurring in tensor products are calculated, which involve a Gaussian or a Poisson multiplier. Spectral multiplicities are also considered in the class of mixing actions. Bibliography: 25 titles.
Keywords: measure preserving action, homogeneous spectrum, spectral multiplicity, weak closure of a subaction.
@article{SM_2009_200_12_a4,
     author = {V. V. Ryzhikov},
     title = {Spectral multiplicities and asymptotic operator properties of actions with invariant measure},
     journal = {Sbornik. Mathematics},
     pages = {1833--1845},
     year = {2009},
     volume = {200},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_12_a4/}
}
TY  - JOUR
AU  - V. V. Ryzhikov
TI  - Spectral multiplicities and asymptotic operator properties of actions with invariant measure
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 1833
EP  - 1845
VL  - 200
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_12_a4/
LA  - en
ID  - SM_2009_200_12_a4
ER  - 
%0 Journal Article
%A V. V. Ryzhikov
%T Spectral multiplicities and asymptotic operator properties of actions with invariant measure
%J Sbornik. Mathematics
%D 2009
%P 1833-1845
%V 200
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2009_200_12_a4/
%G en
%F SM_2009_200_12_a4
V. V. Ryzhikov. Spectral multiplicities and asymptotic operator properties of actions with invariant measure. Sbornik. Mathematics, Tome 200 (2009) no. 12, pp. 1833-1845. http://geodesic.mathdoc.fr/item/SM_2009_200_12_a4/

[1] V. I. Oseledets, “The spectrum of ergodic automorphisms”, Soviet Math. Dokl., 7 (1966), 776–779 | MR | Zbl

[2] G. R. Goodson, “A survey of recent results in the spectral theory of ergodic dynamical systems”, J. Dynam. Control Systems, 5:2 (1999), 173–226 | DOI | MR | Zbl

[3] M. Lemańczyk, Spectral theory of dynamical systems, Encyclopedia of Complexity and System Science, Springer-Verlag, 2009

[4] A. I. Danilenko, On new spectral multiplicities for ergodic maps, arXiv:0904.4808

[5] A. I. Danilenko, V. V. Ryzhikov, Spectral multiplicities for infinite measure preserving transformations, arXiv:0905.3486

[6] D. V. Anosov, O spektralnykh kratnostyakh v ergodicheskoi teorii, Sovr. probl. matem., 3, MIAN, M., 2003 | DOI | MR | Zbl

[7] O. Ageev, “The homogeneous spectrum problem in ergodic theory”, Invent. Math., 160:2 (2005), 417–446 | DOI | MR | Zbl

[8] A. I. Danilenko, “Explicit solution of Rokhlin's problem on homogeneous spectrum and applications”, Ergodic Theory Dynam. Systems, 26:5 (2006), 1467–1490 | DOI | MR | Zbl

[9] V. V. Ryzhikov, “Weak limits of powers, simple spectrum of symmetric products, and rank-one mixing constructions”, Sb. Math., 198:5 (2007), 733–754 | DOI | MR | Zbl

[10] A. M. Stepin, “Spectral properties of generic dynamical systems”, Math. USSR-Izv., 29:1 (1987), 159–192 | DOI | MR | Zbl

[11] A. del Junco, M. Lemańczyk, “Generic spectral properties of measure-preserving maps and applications”, Proc. Amer. Math. Soc., 115:3 (1992), 725–736 | DOI | MR | Zbl

[12] Th. de La Rue, J. de Sam Lazaro, “Une transformation générique peut être insérée dans un flot”, Ann. Inst. H. Poincaré Probab. Statist., 39:1 (2003), 121–134 | DOI | MR | Zbl

[13] A. M. Stepin, A. M. Eremenko, “Non-unique inclusion in a flow and vast centralizer of a generic measure-preserving transformation”, Sb. Math., 195:12 (2004), 1795–1808 | DOI | MR | Zbl

[14] S. V. Tikhonov, “Embedding lattice actions in flows with multidimensional time”, Sb. Math., 197:1 (2006), 95–126 | DOI | MR | Zbl

[15] O. N. Ageev, “On the genericity of some non-asymptotic dynamical properties”, Russian Math. Surveys, 58:1 (2003), 173–174 | DOI | MR | Zbl

[16] O. N. Ageev, “A typical dynamical system is not simple or semisimple”, Ergodic Theory Dynam. Systems, 23:6 (2003), 1625–1636 | DOI | MR | Zbl

[17] A. I. Danilenko, “On simplicity concepts for ergodic actions”, J. Anal. Math., 102:1 (2007), 77–117 | DOI | MR | Zbl

[18] S. V. Tikhonov, “A complete metric in the set of mixing transformations”, Sb. Math., 198:4 (2007), 575–596 | DOI | MR | Zbl

[19] V. V. Ryzhikov, “Transformations having homogeneous spectra”, J. Dynam. Control Systems, 5:1 (1999), 145–148 | DOI | MR | Zbl

[20] O. N. Ageev, “On ergodic transformations with homogeneous spectrum”, J. Dynam. Control Systems, 5:1 (1999), 149–152 | DOI | MR | Zbl

[21] V. V. Ryzhikov, “Homogeneous spectrum, disjointness of convolutions, and mixing properties of dynamical systems”, Selected Russian Mathematics, 1, 1999, 13–24

[22] A. B. Katok, A. M. Stepin, “Metric properties of measure preserving homeomorphisms”, Russian Math. Surveys, 25:2 (1970), 191–220 | DOI | MR | Zbl | Zbl

[23] A. Katok, Combinatorial constructions in ergodic theory and dynamics, Univ. Lecture Ser., 30, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl

[24] A. A. Prikhod'ko, V. V. Ryzhikov, “Disjointness of the convolutions for Chacon's automorphism”, Colloq. Math., 84/85 (2000), 67–74 | MR | Zbl

[25] O. Ageev, “Mixing with staircase multiplicity functions”, Ergodic Theory Dynam. Systems, 28:6 (2008), 1687–1700 | DOI | MR | Zbl