On the boundedness of a class of fractional type integral operators
Sbornik. Mathematics, Tome 200 (2009) no. 12, pp. 1807-1832 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Criteria for boundedness of fractional type integral operators in weighted Lebesgue spaces are presented. Bibliography: 15 items.
Keywords: fractional type integral operators, weighted Lebesgue spaces.
@article{SM_2009_200_12_a3,
     author = {N. A. Rautian},
     title = {On the boundedness of a~class of fractional type integral operators},
     journal = {Sbornik. Mathematics},
     pages = {1807--1832},
     year = {2009},
     volume = {200},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_12_a3/}
}
TY  - JOUR
AU  - N. A. Rautian
TI  - On the boundedness of a class of fractional type integral operators
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 1807
EP  - 1832
VL  - 200
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_12_a3/
LA  - en
ID  - SM_2009_200_12_a3
ER  - 
%0 Journal Article
%A N. A. Rautian
%T On the boundedness of a class of fractional type integral operators
%J Sbornik. Mathematics
%D 2009
%P 1807-1832
%V 200
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2009_200_12_a3/
%G en
%F SM_2009_200_12_a3
N. A. Rautian. On the boundedness of a class of fractional type integral operators. Sbornik. Mathematics, Tome 200 (2009) no. 12, pp. 1807-1832. http://geodesic.mathdoc.fr/item/SM_2009_200_12_a3/

[1] R. Oǐnarov, “Two-sided norm estimates for certain classes of integral operators”, Proc. Steklov Inst. Math., 204:3 (1994), 205–214 | MR | Zbl

[2] V. D. Stepanov, “Weighted norm inequalities of Hardy type for a class of integral operators”, J. London Math. Soc. (2), 50:1 (1994), 105–120 | MR | Zbl

[3] V. D. Stepanov, E. P. Ushakova, “Weighted estimates for the integral operators with monotone kernel on a half-axis”, Siberian Math. J., 45:6 (2004), 1124–1134 | DOI | MR | Zbl

[4] A. Meskhi, “Solution of some weight problems for the Riemann–Liouville and Weyl operators”, Georgian Math. J., 5:6 (1998), 565–574 | DOI | MR | Zbl

[5] M. Lorente, “A characterization of two weight norm inequalities for one-sided operators of fractional type”, Canad. J. Math., 49:5 (1997), 1010–1033 | MR | Zbl

[6] E. T. Sawyer, “A characterization of a two-weight norm inequality for maximal operators”, Studia Math., 75:1 (1982), 1–11 | MR | Zbl

[7] K. F. Andersen, E. T. Sawyer, “Weighted norm inequalities for the Riemann–Liouville and Weyl fractional integral operators”, Trans. Amer. Math. Soc., 308:2 (1998), 547–558 | DOI | MR | Zbl

[8] F. J. Martin-Reyes, A. de la Torre, “Two weight norm inequalities for fractional one-sided maximal operators”, Proc. Amer. Math. Soc., 117:2 (1993), 483–489 | DOI | MR | Zbl

[9] M. Lorente, A. de la Torre, “Weighted inequalities for some one-sided operators”, Proc. Amer. Math. Soc., 124:3 (1996), 839–848 | DOI | MR | Zbl

[10] D. V. Prokhorov, “On the boundedness and compactness of a class of integral operators”, J. London Math. Soc. (2), 61:2 (2000), 617–628 | DOI | MR | Zbl

[11] D. V. Prokhorov, V. D. Stepanov, “Weighted estimates for the Riemann–Liouville operators and applications”, Proc. Steklov Inst. Math., 204:4 (2003), 278–301 | MR | Zbl

[12] Y. Rakotondratsimba, “Weighted norm inequalities for Riemann–Liouville fractional integrals of order less than one”, Z. Anal. Anwendungen, 16:4 (1997), 801–829 | MR | Zbl

[13] G. Sinnamon, V. D. Stepanov, “The weighted Hardy inequality: new proofs and the case $p=1$”, J. London Math. Soc. (2), 54:1 (1996), 89–101 | MR | Zbl

[14] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge Univ. Press, Cambridge, 1934 | MR | MR | Zbl

[15] M. A. Krasnosel'skij, P. P. Zabrejko, E. I. Pustylnik, P. E. Sobolevskij, Integral operators in spaces of summable functions, Noordhoff, Leyden, 1976 | MR | MR | Zbl | Zbl