On the Ramsey numbers for complete distance graphs with vertices in~$\{0,1\}^n$
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 200 (2009) no. 12, pp. 1789-1806
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A new problem of Ramsey type is posed for complete distance graphs in $\mathbb R^n$ with vertices in the Boolean cube. This problem is closely related to the classical Nelson-Erdős-Hadwiger problem on the chromatic number of a space. Several quite sharp estimates are obtained for certain numerical characteristics that appear in the framework of the problem.
Bibliography: 15 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Ramsey numbers, distance graphs, chromatic number.
                    
                    
                    
                  
                
                
                @article{SM_2009_200_12_a2,
     author = {K. A. Mikhailov and A. M. Raigorodskii},
     title = {On the {Ramsey} numbers for complete distance graphs with vertices in~$\{0,1\}^n$},
     journal = {Sbornik. Mathematics},
     pages = {1789--1806},
     publisher = {mathdoc},
     volume = {200},
     number = {12},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_12_a2/}
}
                      
                      
                    TY  - JOUR
AU  - K. A. Mikhailov
AU  - A. M. Raigorodskii
TI  - On the Ramsey numbers for complete distance graphs with vertices in~$\{0,1\}^n$
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 1789
EP  - 1806
VL  - 200
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_12_a2/
LA  - en
ID  - SM_2009_200_12_a2
ER  - 
                      
                      
                    K. A. Mikhailov; A. M. Raigorodskii. On the Ramsey numbers for complete distance graphs with vertices in~$\{0,1\}^n$. Sbornik. Mathematics, Tome 200 (2009) no. 12, pp. 1789-1806. http://geodesic.mathdoc.fr/item/SM_2009_200_12_a2/
                  
                