Integrable Hamiltonian systems on low-dimensional Lie algebras
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 200 (2009) no. 12, pp. 1731-1766
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For any real Lie algebra of dimension 3, 4 or 5 and any nilpotent algebra of dimension 6 an integrable Hamiltonian system with polynomial coefficients is found on its coalgebra. These systems are constructed using Sadetov's method for constructing complete commutative families of polynomials on a Lie coalgebra.
Bibliography: 17 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
integrable Hamiltonian systems, complete commutative families of polynomials, Sadetov's method.
                    
                    
                    
                  
                
                
                @article{SM_2009_200_12_a0,
     author = {A. A. Korotkevich},
     title = {Integrable {Hamiltonian} systems on low-dimensional {Lie} algebras},
     journal = {Sbornik. Mathematics},
     pages = {1731--1766},
     publisher = {mathdoc},
     volume = {200},
     number = {12},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_12_a0/}
}
                      
                      
                    A. A. Korotkevich. Integrable Hamiltonian systems on low-dimensional Lie algebras. Sbornik. Mathematics, Tome 200 (2009) no. 12, pp. 1731-1766. http://geodesic.mathdoc.fr/item/SM_2009_200_12_a0/
