Integrable Hamiltonian systems on low-dimensional Lie algebras
Sbornik. Mathematics, Tome 200 (2009) no. 12, pp. 1731-1766 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For any real Lie algebra of dimension 3, 4 or 5 and any nilpotent algebra of dimension 6 an integrable Hamiltonian system with polynomial coefficients is found on its coalgebra. These systems are constructed using Sadetov's method for constructing complete commutative families of polynomials on a Lie coalgebra. Bibliography: 17 titles.
Keywords: integrable Hamiltonian systems, complete commutative families of polynomials, Sadetov's method.
@article{SM_2009_200_12_a0,
     author = {A. A. Korotkevich},
     title = {Integrable {Hamiltonian} systems on low-dimensional {Lie} algebras},
     journal = {Sbornik. Mathematics},
     pages = {1731--1766},
     year = {2009},
     volume = {200},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_12_a0/}
}
TY  - JOUR
AU  - A. A. Korotkevich
TI  - Integrable Hamiltonian systems on low-dimensional Lie algebras
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 1731
EP  - 1766
VL  - 200
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_12_a0/
LA  - en
ID  - SM_2009_200_12_a0
ER  - 
%0 Journal Article
%A A. A. Korotkevich
%T Integrable Hamiltonian systems on low-dimensional Lie algebras
%J Sbornik. Mathematics
%D 2009
%P 1731-1766
%V 200
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2009_200_12_a0/
%G en
%F SM_2009_200_12_a0
A. A. Korotkevich. Integrable Hamiltonian systems on low-dimensional Lie algebras. Sbornik. Mathematics, Tome 200 (2009) no. 12, pp. 1731-1766. http://geodesic.mathdoc.fr/item/SM_2009_200_12_a0/

[1] V. V. Trofimov, A. T. Fomenko, Algebra i geometriya integriruemykh gamiltonovykh differentsialnykh uravnenii, Faktorial, M.; Prosperus, Izhevsk, 1995 | MR | Zbl

[2] A. S. Miščenko, A. T. Fomenko, “Euler equations on finite-dimensional Lie groups”, Math. USSR-Izv., 12:2 (1978), 371–389 | DOI | MR | Zbl | Zbl

[3] A. S. Mishchenko, A. T. Fomenko, “Generalized Liouville method of integration of Hamiltonian systems”, Funct. Anal. Appl., 12:2 (1978), 113–121 | DOI | MR | Zbl | Zbl

[4] A. S. Mischenko, A. T. Fomenko, “Nekommutativnoe integrirovanie gamiltonovykh sistem i ego prilozheniya”, Mekhanika tverdogo tela, 1978, no. 4, 187–188

[5] A. S. Mishchenko, A. T. Fomenko, “On the integration of the Euler equations on semisimple Lie algebras”, Soviet Math. Dokl., 17:6 (1976), 1591–1594 | MR | Zbl

[6] A. S. Mishchenko, A. T. Fomenko, “Integrability of Euler equations on semisimple Lie algebras”, Selecta Math. Soviet., 2:3 (1982), 207–291 | MR | MR | Zbl | Zbl

[7] V. V. Trofimov, “Euler equations on Borel subalgebras of semisimple Lie algebras”, Math. USSR-Izv., 14:3 (1980), 653–670 | DOI | MR | Zbl | Zbl

[8] V. V. Trofimov, A. T. Fomenko, “Dynamical systems on the orbits of linear representations of Lie groups and the complete integrability of certain hydrodynamical systems”, Funct. Anal. Appl., 17:1 (1983), 23–29 | DOI | MR | Zbl

[9] V. V. Trofimov, A. T. Fomenko, “Liouville integrability of Hamiltonian systems on Lie algebras”, Russian Math. Surveys, 39:2 (1984), 1–67 | DOI | MR | Zbl

[10] V. V. Trofimov, A. T. Fomenko, “The topology of integral submanifolds of completely integrable Hamiltonian systems”, Math. USSR-Sb., 62:2 (1989), 373–383 | DOI | MR | Zbl | Zbl

[11] S. T. Sadetov, “A proof of the Mishchenko–Fomenko conjecture”, Dokl. Math., 70:1 (2004), 635–638 | MR

[12] A. V. Bolsinov, “Polnye involyutivnye nabory polinomov v puassonovykh algebrakh: dokazatelstvo gipotezy Mischenko–Fomenko”, Tr. sem. po vekt. i tenz. analizu, 26, Izd-vo Mosk. un-ta, M., 2005, 87–109 | Zbl

[13] J. Patera, R. T. Sharp, P. Winternitz, H. Zassenhaus, “Invariants of real low dimension Lie algebras”, J. Mathematical Phys., 17:6 (1976), 986–994 | DOI | MR | Zbl

[14] V. V. Morozov, “Klassifikatsiya nilpotentnykh algebr Li shestogo poryadka”, Izv. vuzov. Matem., 1958, no. 4, 161–171 | MR | Zbl

[15] G. M. Mubarakzyanov, “Klassifikatsiya veschestvennykh struktur algebr Li pyatogo poryadka”, Izv. vuzov. Matem., 1963, no. 3, 99–106 | MR | Zbl

[16] Yu. S. Balina, Koprisoedinennoe predstavlenie i invarianty grupp Li malykh razmernostei, Diplomnaya rabota, MGU im. M. V. Lomonosova, mekh.-mat. f-t, kaf. Diff. geometrii i prilozhenii, M., 2002

[17] K. M. Zuev, Formalnyi metod sdviga argumenta i geometriya integriruemykh geodezicheskikh potokov, Dis. ... kand. fiz.-matem. nauk, MGU im. M. V. Lomonosova, M., 2008