Integrable Hamiltonian systems on low-dimensional Lie algebras
Sbornik. Mathematics, Tome 200 (2009) no. 12, pp. 1731-1766

Voir la notice de l'article provenant de la source Math-Net.Ru

For any real Lie algebra of dimension 3, 4 or 5 and any nilpotent algebra of dimension 6 an integrable Hamiltonian system with polynomial coefficients is found on its coalgebra. These systems are constructed using Sadetov's method for constructing complete commutative families of polynomials on a Lie coalgebra. Bibliography: 17 titles.
Keywords: integrable Hamiltonian systems, complete commutative families of polynomials, Sadetov's method.
@article{SM_2009_200_12_a0,
     author = {A. A. Korotkevich},
     title = {Integrable {Hamiltonian} systems on low-dimensional {Lie} algebras},
     journal = {Sbornik. Mathematics},
     pages = {1731--1766},
     publisher = {mathdoc},
     volume = {200},
     number = {12},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_12_a0/}
}
TY  - JOUR
AU  - A. A. Korotkevich
TI  - Integrable Hamiltonian systems on low-dimensional Lie algebras
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 1731
EP  - 1766
VL  - 200
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_12_a0/
LA  - en
ID  - SM_2009_200_12_a0
ER  - 
%0 Journal Article
%A A. A. Korotkevich
%T Integrable Hamiltonian systems on low-dimensional Lie algebras
%J Sbornik. Mathematics
%D 2009
%P 1731-1766
%V 200
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2009_200_12_a0/
%G en
%F SM_2009_200_12_a0
A. A. Korotkevich. Integrable Hamiltonian systems on low-dimensional Lie algebras. Sbornik. Mathematics, Tome 200 (2009) no. 12, pp. 1731-1766. http://geodesic.mathdoc.fr/item/SM_2009_200_12_a0/