Hassett-Tschinkel correspondence and automorphisms of the quadric
Sbornik. Mathematics, Tome 200 (2009) no. 11, pp. 1715-1729

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study locally transitive actions of the commutative unipotent group $\mathbb G_a^n$ on a nondegenerate quadric in the projective space $\mathbb P^{n+1}$. It is shown that for each $n$ such an action is unique up to isomorphism. Bibliography: 9 titles.
Keywords: automorphisms of quadrics, locally transitive actions.
@article{SM_2009_200_11_a5,
     author = {E. V. Sharoiko},
     title = {Hassett-Tschinkel correspondence and automorphisms of the quadric},
     journal = {Sbornik. Mathematics},
     pages = {1715--1729},
     publisher = {mathdoc},
     volume = {200},
     number = {11},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_11_a5/}
}
TY  - JOUR
AU  - E. V. Sharoiko
TI  - Hassett-Tschinkel correspondence and automorphisms of the quadric
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 1715
EP  - 1729
VL  - 200
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_11_a5/
LA  - en
ID  - SM_2009_200_11_a5
ER  - 
%0 Journal Article
%A E. V. Sharoiko
%T Hassett-Tschinkel correspondence and automorphisms of the quadric
%J Sbornik. Mathematics
%D 2009
%P 1715-1729
%V 200
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2009_200_11_a5/
%G en
%F SM_2009_200_11_a5
E. V. Sharoiko. Hassett-Tschinkel correspondence and automorphisms of the quadric. Sbornik. Mathematics, Tome 200 (2009) no. 11, pp. 1715-1729. http://geodesic.mathdoc.fr/item/SM_2009_200_11_a5/