@article{SM_2009_200_11_a5,
author = {E. V. Sharoiko},
title = {Hassett-Tschinkel correspondence and automorphisms of the quadric},
journal = {Sbornik. Mathematics},
pages = {1715--1729},
year = {2009},
volume = {200},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2009_200_11_a5/}
}
E. V. Sharoiko. Hassett-Tschinkel correspondence and automorphisms of the quadric. Sbornik. Mathematics, Tome 200 (2009) no. 11, pp. 1715-1729. http://geodesic.mathdoc.fr/item/SM_2009_200_11_a5/
[1] B. Hassett, Yu. Tschinkel, “Geometry of equivariant compactifications of $\mathbb G^n_a$”, Internat. Math. Res. Notices, 22 (1999), 1211–1230 | DOI | MR | Zbl
[2] D. A. Suprunenko, R. I. Tyshkevich, Perestanovochnye matritsy, Nauka i tekhnika, Minsk, 1966 | MR | Zbl
[3] H. Matsumura, P. Monsky, “On the automorphisms of hypersurfaces”, J. Math. Kyoto Univ., 3 (1964), 347–361 | MR | Zbl
[4] M. Doebeli, “Reductive group actions on affine quadrics with 1-dimensional quotient: Linearization when a linear model exists”, Transform. Groups, 1:3 (1996), 187–214 | DOI | MR | Zbl
[5] B. Totaro, “The automorphism group of an affine quadric”, Math. Proc. Cambridge Philos. Soc., 143:1 (2007), 1–8 | DOI | MR | Zbl
[6] D. N. Akhiezer, “On the modality and complexity of actions of reductive groups”, Russian Math. Surveys, 43:2 (1988), 157–158 | DOI | MR | Zbl
[7] I. V. Arzhantsev, “On modality and complexity of affine embeddings”, Sb. Math., 192:8 (2001), 1133–1138 | DOI | MR | Zbl
[8] V. L. Popov, Eh. B. Vinberg, “Invariant theory”, Algebraic geometry. IV. Linear algebraic groups, invariant theory, Encyclopaedia Math. Sci., 55, Springer-Verlag, Berlin, 1994, 123–278 | MR | MR | Zbl | Zbl
[9] V. Hussin, P. Winternitz, H. Zassenhaus, “Maximal abelian subalgebras of complex orthogonal Lie algebras”, Linear Algebra Appl., 141 (1990), 183–220 | DOI | MR | Zbl