@article{SM_2009_200_11_a4,
author = {D. V. Tunitsky},
title = {On some categories of {Monge-Amp\`ere} systems of equations},
journal = {Sbornik. Mathematics},
pages = {1681--1714},
year = {2009},
volume = {200},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2009_200_11_a4/}
}
D. V. Tunitsky. On some categories of Monge-Ampère systems of equations. Sbornik. Mathematics, Tome 200 (2009) no. 11, pp. 1681-1714. http://geodesic.mathdoc.fr/item/SM_2009_200_11_a4/
[1] R. O. Wells, jr., Differential analysis on complex manifolds, Prentice-Hall, Englewood Cliffs, NJ, 1973 | MR | MR | Zbl
[2] D. V. Tunitskii, “Hyperbolic Monge–Ampère systems”, Sb. Math., 197:8 (2006), 1223–1258 | DOI | MR | Zbl
[3] I. Bucur, A. Deleanu, Introduction to the theory of categories and functors, Wiley, London–New York–Sydney, 1968 | MR | MR | Zbl | Zbl
[4] S. I. Bilchev, “Sistemy iz dvukh differentsialnykh uravnenii s chastnymi proizvodnymi pervogo poryadka (lokalnaya teoriya)”, Izv. vuzov. Matem., 1970, no. 3, 14–21 | MR | Zbl
[5] A. M. Vasilev, Teoriya differentsialno-geometricheskikh struktur, Izd-vo Mosk. un-ta, M., 1986 | MR | Zbl
[6] T. Morimoto, “La géométrie des équations de Monge–Ampère”, C. R. Acad. Sci. Paris Sér. A-B, 289:1 (1979), 25–28 | MR | Zbl
[7] D. V. Tunitskii, “On the contact linearization of Monge–Ampere equations”, Izv. Math., 60:2 (1996), 425–451 | DOI | MR | Zbl
[8] D. V. Tunitskii, “Equivalence and characteristic connections of the Monge–Ampere equations”, Sb. Math., 188:5 (1997), 771–797 | DOI | MR | Zbl
[9] R. Courant, Methods of mathematical physics. Vol. II: Partial differential equations, Intersci. Publ., New York–London, 1962 | MR | MR | Zbl | Zbl
[10] O. K. Fossum, On classification of a nonlinear first order system of Jacobi type, Preprints of the Sophus Lie seminar, University of Tromso, 2002; http://www.math.uit.no/seminar/preprints/02-12-of.pdf
[11] V. Lychagin, Lectures on geometry of differential equations, Part II. Roma, 1992
[12] A. Kushner, V. Lychagin, V. Rubtsov, Contact geometry and nonlinear differential equations, Encyclopedia Math. Appl., 101, Cambridge Univ. Press, Cambridge, 2007 | MR | Zbl
[13] N. E. Hurt, Geometric quantization in action. Applications of harmonic analysis in quantum statistical mechanics and quantum field theory, Math. Appl. (East European Ser.), 8, Reidel Publ., Dordrecht–Boston, MA, 1983 | MR | MR | Zbl
[14] É. Cartan, Les systèmes différentiels extérieurs et leurs applications géométriques, Hermann, Paris, 1945 | MR | Zbl