A generalization of the Whittaker-Kotel'nikov-Shannon sampling theorem for continuous functions on a closed interval
Sbornik. Mathematics, Tome 200 (2009) no. 11, pp. 1633-1679 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Classes of functions in the space of continuous functions $f$ defined on the interval $[0,\pi]$ and vanishing at its end-points are described for which there is pointwise and approximate uniform convergence of Lagrange-type operators $$ S_\lambda(f,x)=\sum_{k=0}^n\frac{y(x,\lambda)}{y'(x_{k,\lambda}) (x-x_{k,\lambda})}f(x_{k,\lambda}). $$ These operators involve the solutions $y(x,\lambda)$ of the Cauchy problem for the equation $$ y''+(\lambda-q_\lambda(x))y=0 $$ where $q_\lambda\in V_{\rho_\lambda}[0,\pi]$ (here $V_{\rho_\lambda}[0,\pi]$ is the ball of radius $\rho_\lambda=o(\sqrt\lambda/\ln\lambda)$ in the space of functions of bounded variation vanishing at the origin, and $y(x_{k,\lambda})=0$). Several modifications of this operator are proposed, which allow an arbitrary continuous function on $[0,\pi]$ to be approximated uniformly. Bibliography: 40 titles.
Keywords: sampling theorem, sinc approximation.
Mots-clés : interpolation, uniform convergence
@article{SM_2009_200_11_a3,
     author = {A. Yu. Trynin},
     title = {A generalization of the {Whittaker-Kotel'nikov-Shannon} sampling theorem for continuous functions on a~closed interval},
     journal = {Sbornik. Mathematics},
     pages = {1633--1679},
     year = {2009},
     volume = {200},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_11_a3/}
}
TY  - JOUR
AU  - A. Yu. Trynin
TI  - A generalization of the Whittaker-Kotel'nikov-Shannon sampling theorem for continuous functions on a closed interval
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 1633
EP  - 1679
VL  - 200
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_11_a3/
LA  - en
ID  - SM_2009_200_11_a3
ER  - 
%0 Journal Article
%A A. Yu. Trynin
%T A generalization of the Whittaker-Kotel'nikov-Shannon sampling theorem for continuous functions on a closed interval
%J Sbornik. Mathematics
%D 2009
%P 1633-1679
%V 200
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2009_200_11_a3/
%G en
%F SM_2009_200_11_a3
A. Yu. Trynin. A generalization of the Whittaker-Kotel'nikov-Shannon sampling theorem for continuous functions on a closed interval. Sbornik. Mathematics, Tome 200 (2009) no. 11, pp. 1633-1679. http://geodesic.mathdoc.fr/item/SM_2009_200_11_a3/

[1] A. Yu. Trynin, “Tests for pointwise and uniform convergence of sinc approximations of continuous functions on a closed interval”, Sb. Math., 198:10 (2007), 1517–1534 | DOI | MR | Zbl

[2] A. Yu. Trynin, “Estimates for the Lebesgue functions and the Nevai formula for the sinc-approximations of continuous functions on an interval”, Siberian Math. J., 48:5 (2007), 929–938 | DOI | MR | Zbl

[3] I. K. Daugavet, Vvedenie v teoriyu priblizheniya funktsii, Izd-vo Len. un-ta, L., 1977 | MR | Zbl

[4] I. P. Natanson, Constructive function theory, vol. I–III, Ungar Publ., New York, 1964–1965 | MR | MR | Zbl | Zbl

[5] P. K. Suetin, Klassicheskie ortogonalnye mnogochleny, Nauka, M., 1976 | MR | Zbl

[6] G. Szegő, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, Amer. Math. Soc., Providence, RI, 1959 | MR | Zbl | Zbl

[7] A. A. Privalov, Teoriya interpolirovaniya funktsii, kn. 1, 2, Izd-vo Sarat. un-ta, Saratov, 1990 | MR | Zbl

[8] G. I. Natanson, “Ob odnom interpolyatsionnom protsesse”, Uchenye zapiski Len. ped. in-ta im. A. I. Gertsena, 166 (1958), 213–219 | MR

[9] V. P. Sklyarov, “Ravnomernye priblizheniya funktsiyami Lagerra”, Differentsialnye uravneniya i teoriya funktsii. Ryady Fure, interpolirovanie, Mezhvuz. nauchn. sb., Saratov, 1981, 93–109

[10] A. Yu. Trynin, O ravnomernoi skhodimosti interpolyatsionnykh protsessov Lagranzha–Shturma–Liuvillya, dep. v VINITI 1763-V91

[11] A. Yu. Trynin, Ob odnom priznake skhodimosti interpolyatsionnykh protsessov Lagranzha–Shturma–Liuvillya, dep. v VINITI 2201-V91

[12] A. Yu. Trynin, “Absence of stability of interpolation with respect to eigenfunctions of the Sturm–Liouville problem”, Russian Math. (Iz. VUZ), 44:9 (2000), 58–71 | MR | Zbl

[13] S. S. Platonov, “Analog of the Whittaker–Kotel'nikov–Shannon theorem from the point of view of Fourier–Bessel analysis”, Math. Notes, 83:1–2 (2008), 238–245 | DOI | MR | Zbl

[14] A. S. Zhuk, V. V. Zhuk, “Some orthogonalities in approximation theory”, J. Math. Sci. (N. Y.), 133:6 (2006), 1652–1675 | DOI | MR | Zbl

[15] M. G. Beaty, M. M. Dodson, “The Whittaker–Kotel'nikov–Shannon theorem, spectral translates and Plancherel's formula”, J. Fourier Anal. Appl., 10:2 (2004), 179–199 | DOI | MR | Zbl

[16] F. Stenger, Numerical methods based on Sinc and analytic functions, Springer Ser. Comput. Math., 20, Springer-Verlag, New York, 1993 | MR | Zbl

[17] J. J. Voss, “A sampling theorem with nonuniform complex nodes”, J. Approx. Theory, 90:2 (1997), 235–254 | DOI | MR | Zbl

[18] G. Hinsen, “Irregular sampling of bandlimited $L^p$-functions”, J. Approx. Theory, 72:3 (1993), 346–364 | DOI | MR | Zbl

[19] K. M. McArthur, K. L. Bowers, J. Lund, “The sinc method in multiple space dimensions: model problems”, Numer. Math., 56:8 (1989), 789–816 | DOI | MR | Zbl

[20] A. Boumenir, “Computing eigenvalues of lommel-type equations by the sampling method”, J. Comput. Anal. Appl. 2, 2:4 (2000), 323–332 | DOI | MR | Zbl

[21] A. Mohsen, M. El-Gamel, “A Sinc-collocation method for the linear Fredholm integro-differential equations”, Z. Angew. Math. Phys., 58:3 (2007), 380–390 | DOI | MR | Zbl

[22] W. Hackbusch, B. N. Khoromskij, “Low-rank Kronecker-product approximation to multi-dimensional nonlocal operators. Part I. Separable approximation of multi-variate functions”, Computing, 76:3–4 (2006), 177–202 | DOI | MR | Zbl

[23] M. El-Gamel, J. R. Cannon, “On the solution a of second order singularly-perturbed boundary value problem by the Sinc–Galerkin method”, Z. Angew. Math. Phys., 56:1 (2005), 45–58 | DOI | MR | Zbl

[24] I. Ya. Novikov, S. B. Stechkin, “Osnovnye konstruktsii vspleskov”, Fundament. i prikl. matem., 3:4 (1997), 999–1028 | MR | Zbl

[25] I. Ya. Novikov, S. B. Stechkin, “Basic wavelet theory”, Sb. Math., 53:6 (1998), 1159–1231 | DOI | MR | Zbl

[26] B. S. Kashin, A. A. Saakyan, Ortogonalnye ryady, 2-e izd., Izd-vo AFTs, M., 1999 ; B. S. Kashin, A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989 | MR | Zbl | MR | Zbl

[27] G. G. Walter, X. Shen, “Wavelets based on prolate spheroidal wave functions”, J. Fourier Anal. Appl., 10:1 (2004), 1–26 | DOI | MR | Zbl

[28] P. L. Butzer, R. L. Stens, “A modification of the Whittaker–Kotelnikov–Shannon sampling series”, Aequationes Math., 28:1 (1985), 305–311 | DOI | MR | Zbl

[29] P. L. Butzer, J. R. Higgins, R. L. Stens, “Classical and approximate sampling theorems; studies in the $L^p(\mathbb R)$ and the uniform norm”, J. Approx. Theory, 137:2 (2005), 250–263 | DOI | MR | Zbl

[30] A.Yu. Trynin, “Ob approksimatsii analiticheskikh funktsii operatorami Lagranzha–Shturma–Liuvillya”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Tezisy dokladov 10-i Saratovskoi zimnei shkoly, Izd-vo Sarat. un-ta, Saratov, 2000, 140–141

[31] A. Yu. Trynin, “Ob otsenke approksimatsii analiticheskikh funktsii interpolyatsionnym operatorom po sinkam”, Matematika. Mekhanika, 7 (2005), 124–127

[32] J.-P. Berrut, “A formula for the error of finite sinc-interpolation over a finite interval”, Numer. Algorithms, 45:1–4 (2007), 369–374 | DOI | MR | Zbl

[33] A. Yu. Trynin, V. P. Sklyarov, “Error of sinc approximation of analytic functions on an interval”, Sampl. Theory Signal Image Process., 7:3 (2008), 263–270 | MR

[34] V. P. Sklyarov, “On the best uniform sinc-approximation on a finite interval”, East J. Approx, 14:2 (2008), 183–192 | MR

[35] A. Yu. Trynin, “A criterion for the uniform convergence of sinc-approximations on a segment”, Russian Math. (Iz. VUZ), 52:6 (2008), 58–69 | DOI | MR | Zbl

[36] Ph. Hartman, Ordinary differential equations, Wiley, New York–London–Sydney, 1964 | MR | MR | Zbl | Zbl

[37] B. M. Levitan, I. S. Sargsjan, Sturm–Liouville and Dirac operators, Math. Appl. (Soviet Ser.), 59, Kluwer Acad. Publ., Dordrecht, 1991 | MR | MR | Zbl | Zbl

[38] E. T. Whittaker, G. N. Watson, A course of modern analysis, Cambridge Univ. Press, Cambridge, 1927 | MR | Zbl | Zbl

[39] G. E. Shilov, B. L. Gurevich, Integral, measure and derivative: a unified approach, Prentice-Hall, Englewood Cliffs, NJ, 1966 | MR | MR | Zbl | Zbl

[40] S. B. Stechkin, “O poryadke nailuchshikh priblizhenii nepreryvnykh funktsii”, Izv. AN SSSR. Ser. matem., 15:3 (1951), 219–242 | MR | Zbl