Mots-clés : interpolation, uniform convergence
@article{SM_2009_200_11_a3,
author = {A. Yu. Trynin},
title = {A generalization of the {Whittaker-Kotel'nikov-Shannon} sampling theorem for continuous functions on a~closed interval},
journal = {Sbornik. Mathematics},
pages = {1633--1679},
year = {2009},
volume = {200},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2009_200_11_a3/}
}
TY - JOUR AU - A. Yu. Trynin TI - A generalization of the Whittaker-Kotel'nikov-Shannon sampling theorem for continuous functions on a closed interval JO - Sbornik. Mathematics PY - 2009 SP - 1633 EP - 1679 VL - 200 IS - 11 UR - http://geodesic.mathdoc.fr/item/SM_2009_200_11_a3/ LA - en ID - SM_2009_200_11_a3 ER -
A. Yu. Trynin. A generalization of the Whittaker-Kotel'nikov-Shannon sampling theorem for continuous functions on a closed interval. Sbornik. Mathematics, Tome 200 (2009) no. 11, pp. 1633-1679. http://geodesic.mathdoc.fr/item/SM_2009_200_11_a3/
[1] A. Yu. Trynin, “Tests for pointwise and uniform convergence of sinc approximations of continuous functions on a closed interval”, Sb. Math., 198:10 (2007), 1517–1534 | DOI | MR | Zbl
[2] A. Yu. Trynin, “Estimates for the Lebesgue functions and the Nevai formula for the sinc-approximations of continuous functions on an interval”, Siberian Math. J., 48:5 (2007), 929–938 | DOI | MR | Zbl
[3] I. K. Daugavet, Vvedenie v teoriyu priblizheniya funktsii, Izd-vo Len. un-ta, L., 1977 | MR | Zbl
[4] I. P. Natanson, Constructive function theory, vol. I–III, Ungar Publ., New York, 1964–1965 | MR | MR | Zbl | Zbl
[5] P. K. Suetin, Klassicheskie ortogonalnye mnogochleny, Nauka, M., 1976 | MR | Zbl
[6] G. Szegő, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, Amer. Math. Soc., Providence, RI, 1959 | MR | Zbl | Zbl
[7] A. A. Privalov, Teoriya interpolirovaniya funktsii, kn. 1, 2, Izd-vo Sarat. un-ta, Saratov, 1990 | MR | Zbl
[8] G. I. Natanson, “Ob odnom interpolyatsionnom protsesse”, Uchenye zapiski Len. ped. in-ta im. A. I. Gertsena, 166 (1958), 213–219 | MR
[9] V. P. Sklyarov, “Ravnomernye priblizheniya funktsiyami Lagerra”, Differentsialnye uravneniya i teoriya funktsii. Ryady Fure, interpolirovanie, Mezhvuz. nauchn. sb., Saratov, 1981, 93–109
[10] A. Yu. Trynin, O ravnomernoi skhodimosti interpolyatsionnykh protsessov Lagranzha–Shturma–Liuvillya, dep. v VINITI 1763-V91
[11] A. Yu. Trynin, Ob odnom priznake skhodimosti interpolyatsionnykh protsessov Lagranzha–Shturma–Liuvillya, dep. v VINITI 2201-V91
[12] A. Yu. Trynin, “Absence of stability of interpolation with respect to eigenfunctions of the Sturm–Liouville problem”, Russian Math. (Iz. VUZ), 44:9 (2000), 58–71 | MR | Zbl
[13] S. S. Platonov, “Analog of the Whittaker–Kotel'nikov–Shannon theorem from the point of view of Fourier–Bessel analysis”, Math. Notes, 83:1–2 (2008), 238–245 | DOI | MR | Zbl
[14] A. S. Zhuk, V. V. Zhuk, “Some orthogonalities in approximation theory”, J. Math. Sci. (N. Y.), 133:6 (2006), 1652–1675 | DOI | MR | Zbl
[15] M. G. Beaty, M. M. Dodson, “The Whittaker–Kotel'nikov–Shannon theorem, spectral translates and Plancherel's formula”, J. Fourier Anal. Appl., 10:2 (2004), 179–199 | DOI | MR | Zbl
[16] F. Stenger, Numerical methods based on Sinc and analytic functions, Springer Ser. Comput. Math., 20, Springer-Verlag, New York, 1993 | MR | Zbl
[17] J. J. Voss, “A sampling theorem with nonuniform complex nodes”, J. Approx. Theory, 90:2 (1997), 235–254 | DOI | MR | Zbl
[18] G. Hinsen, “Irregular sampling of bandlimited $L^p$-functions”, J. Approx. Theory, 72:3 (1993), 346–364 | DOI | MR | Zbl
[19] K. M. McArthur, K. L. Bowers, J. Lund, “The sinc method in multiple space dimensions: model problems”, Numer. Math., 56:8 (1989), 789–816 | DOI | MR | Zbl
[20] A. Boumenir, “Computing eigenvalues of lommel-type equations by the sampling method”, J. Comput. Anal. Appl. 2, 2:4 (2000), 323–332 | DOI | MR | Zbl
[21] A. Mohsen, M. El-Gamel, “A Sinc-collocation method for the linear Fredholm integro-differential equations”, Z. Angew. Math. Phys., 58:3 (2007), 380–390 | DOI | MR | Zbl
[22] W. Hackbusch, B. N. Khoromskij, “Low-rank Kronecker-product approximation to multi-dimensional nonlocal operators. Part I. Separable approximation of multi-variate functions”, Computing, 76:3–4 (2006), 177–202 | DOI | MR | Zbl
[23] M. El-Gamel, J. R. Cannon, “On the solution a of second order singularly-perturbed boundary value problem by the Sinc–Galerkin method”, Z. Angew. Math. Phys., 56:1 (2005), 45–58 | DOI | MR | Zbl
[24] I. Ya. Novikov, S. B. Stechkin, “Osnovnye konstruktsii vspleskov”, Fundament. i prikl. matem., 3:4 (1997), 999–1028 | MR | Zbl
[25] I. Ya. Novikov, S. B. Stechkin, “Basic wavelet theory”, Sb. Math., 53:6 (1998), 1159–1231 | DOI | MR | Zbl
[26] B. S. Kashin, A. A. Saakyan, Ortogonalnye ryady, 2-e izd., Izd-vo AFTs, M., 1999 ; B. S. Kashin, A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989 | MR | Zbl | MR | Zbl
[27] G. G. Walter, X. Shen, “Wavelets based on prolate spheroidal wave functions”, J. Fourier Anal. Appl., 10:1 (2004), 1–26 | DOI | MR | Zbl
[28] P. L. Butzer, R. L. Stens, “A modification of the Whittaker–Kotelnikov–Shannon sampling series”, Aequationes Math., 28:1 (1985), 305–311 | DOI | MR | Zbl
[29] P. L. Butzer, J. R. Higgins, R. L. Stens, “Classical and approximate sampling theorems; studies in the $L^p(\mathbb R)$ and the uniform norm”, J. Approx. Theory, 137:2 (2005), 250–263 | DOI | MR | Zbl
[30] A.Yu. Trynin, “Ob approksimatsii analiticheskikh funktsii operatorami Lagranzha–Shturma–Liuvillya”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Tezisy dokladov 10-i Saratovskoi zimnei shkoly, Izd-vo Sarat. un-ta, Saratov, 2000, 140–141
[31] A. Yu. Trynin, “Ob otsenke approksimatsii analiticheskikh funktsii interpolyatsionnym operatorom po sinkam”, Matematika. Mekhanika, 7 (2005), 124–127
[32] J.-P. Berrut, “A formula for the error of finite sinc-interpolation over a finite interval”, Numer. Algorithms, 45:1–4 (2007), 369–374 | DOI | MR | Zbl
[33] A. Yu. Trynin, V. P. Sklyarov, “Error of sinc approximation of analytic functions on an interval”, Sampl. Theory Signal Image Process., 7:3 (2008), 263–270 | MR
[34] V. P. Sklyarov, “On the best uniform sinc-approximation on a finite interval”, East J. Approx, 14:2 (2008), 183–192 | MR
[35] A. Yu. Trynin, “A criterion for the uniform convergence of sinc-approximations on a segment”, Russian Math. (Iz. VUZ), 52:6 (2008), 58–69 | DOI | MR | Zbl
[36] Ph. Hartman, Ordinary differential equations, Wiley, New York–London–Sydney, 1964 | MR | MR | Zbl | Zbl
[37] B. M. Levitan, I. S. Sargsjan, Sturm–Liouville and Dirac operators, Math. Appl. (Soviet Ser.), 59, Kluwer Acad. Publ., Dordrecht, 1991 | MR | MR | Zbl | Zbl
[38] E. T. Whittaker, G. N. Watson, A course of modern analysis, Cambridge Univ. Press, Cambridge, 1927 | MR | Zbl | Zbl
[39] G. E. Shilov, B. L. Gurevich, Integral, measure and derivative: a unified approach, Prentice-Hall, Englewood Cliffs, NJ, 1966 | MR | MR | Zbl | Zbl
[40] S. B. Stechkin, “O poryadke nailuchshikh priblizhenii nepreryvnykh funktsii”, Izv. AN SSSR. Ser. matem., 15:3 (1951), 219–242 | MR | Zbl