A generalization of the Whittaker-Kotel'nikov-Shannon sampling theorem for continuous functions on a~closed interval
Sbornik. Mathematics, Tome 200 (2009) no. 11, pp. 1633-1679

Voir la notice de l'article provenant de la source Math-Net.Ru

Classes of functions in the space of continuous functions $f$ defined on the interval $[0,\pi]$ and vanishing at its end-points are described for which there is pointwise and approximate uniform convergence of Lagrange-type operators $$ S_\lambda(f,x)=\sum_{k=0}^n\frac{y(x,\lambda)}{y'(x_{k,\lambda}) (x-x_{k,\lambda})}f(x_{k,\lambda}). $$ These operators involve the solutions $y(x,\lambda)$ of the Cauchy problem for the equation $$ y''+(\lambda-q_\lambda(x))y=0 $$ where $q_\lambda\in V_{\rho_\lambda}[0,\pi]$ (here $V_{\rho_\lambda}[0,\pi]$ is the ball of radius $\rho_\lambda=o(\sqrt\lambda/\ln\lambda)$ in the space of functions of bounded variation vanishing at the origin, and $y(x_{k,\lambda})=0$). Several modifications of this operator are proposed, which allow an arbitrary continuous function on $[0,\pi]$ to be approximated uniformly. Bibliography: 40 titles.
Keywords: sampling theorem, sinc approximation.
Mots-clés : interpolation, uniform convergence
@article{SM_2009_200_11_a3,
     author = {A. Yu. Trynin},
     title = {A generalization of the {Whittaker-Kotel'nikov-Shannon} sampling theorem for continuous functions on a~closed interval},
     journal = {Sbornik. Mathematics},
     pages = {1633--1679},
     publisher = {mathdoc},
     volume = {200},
     number = {11},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_11_a3/}
}
TY  - JOUR
AU  - A. Yu. Trynin
TI  - A generalization of the Whittaker-Kotel'nikov-Shannon sampling theorem for continuous functions on a~closed interval
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 1633
EP  - 1679
VL  - 200
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_11_a3/
LA  - en
ID  - SM_2009_200_11_a3
ER  - 
%0 Journal Article
%A A. Yu. Trynin
%T A generalization of the Whittaker-Kotel'nikov-Shannon sampling theorem for continuous functions on a~closed interval
%J Sbornik. Mathematics
%D 2009
%P 1633-1679
%V 200
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2009_200_11_a3/
%G en
%F SM_2009_200_11_a3
A. Yu. Trynin. A generalization of the Whittaker-Kotel'nikov-Shannon sampling theorem for continuous functions on a~closed interval. Sbornik. Mathematics, Tome 200 (2009) no. 11, pp. 1633-1679. http://geodesic.mathdoc.fr/item/SM_2009_200_11_a3/