A generalization of the Whittaker-Kotel'nikov-Shannon sampling theorem for continuous functions on a~closed interval
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 200 (2009) no. 11, pp. 1633-1679
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Classes of functions in the space of continuous functions $f$ defined on the interval $[0,\pi]$ and vanishing at its end-points are described for which there is pointwise and approximate uniform convergence
of Lagrange-type operators 
$$
S_\lambda(f,x)=\sum_{k=0}^n\frac{y(x,\lambda)}{y'(x_{k,\lambda})
(x-x_{k,\lambda})}f(x_{k,\lambda}).
$$
These operators involve the solutions $y(x,\lambda)$ of the Cauchy problem for the equation
$$
y''+(\lambda-q_\lambda(x))y=0
$$
where $q_\lambda\in V_{\rho_\lambda}[0,\pi]$ (here $V_{\rho_\lambda}[0,\pi]$ is the ball of radius
$\rho_\lambda=o(\sqrt\lambda/\ln\lambda)$ in the space of functions of bounded variation vanishing at the origin, and $y(x_{k,\lambda})=0$). Several modifications of this operator are proposed, which allow  an arbitrary continuous function on $[0,\pi]$ to be approximated uniformly.
Bibliography: 40 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
sampling theorem, sinc approximation.
Mots-clés : interpolation, uniform convergence
                    
                  
                
                
                Mots-clés : interpolation, uniform convergence
@article{SM_2009_200_11_a3,
     author = {A. Yu. Trynin},
     title = {A generalization of the {Whittaker-Kotel'nikov-Shannon} sampling theorem for continuous functions on a~closed interval},
     journal = {Sbornik. Mathematics},
     pages = {1633--1679},
     publisher = {mathdoc},
     volume = {200},
     number = {11},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_11_a3/}
}
                      
                      
                    TY - JOUR AU - A. Yu. Trynin TI - A generalization of the Whittaker-Kotel'nikov-Shannon sampling theorem for continuous functions on a~closed interval JO - Sbornik. Mathematics PY - 2009 SP - 1633 EP - 1679 VL - 200 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2009_200_11_a3/ LA - en ID - SM_2009_200_11_a3 ER -
%0 Journal Article %A A. Yu. Trynin %T A generalization of the Whittaker-Kotel'nikov-Shannon sampling theorem for continuous functions on a~closed interval %J Sbornik. Mathematics %D 2009 %P 1633-1679 %V 200 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2009_200_11_a3/ %G en %F SM_2009_200_11_a3
A. Yu. Trynin. A generalization of the Whittaker-Kotel'nikov-Shannon sampling theorem for continuous functions on a~closed interval. Sbornik. Mathematics, Tome 200 (2009) no. 11, pp. 1633-1679. http://geodesic.mathdoc.fr/item/SM_2009_200_11_a3/
