Hardy-Littlewood theorem for trigonometric series with $\alpha$-monotone coefficients
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 200 (2009) no. 11, pp. 1617-1631
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The Hardy-Littlewood theorem is established for trigonometric series with $\alpha$-monotone coefficients. Inequalities of Hardy-Littlewood kind are proved. Examples of series demonstrating that the results obtained
are sharp are constructed.
Bibliography: 15 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
generalized monotone coefficients, Hardy-Littlewood theorem.
                    
                    
                    
                  
                
                
                @article{SM_2009_200_11_a2,
     author = {M. I. Dyachenko and E. D. Nursultanov},
     title = {Hardy-Littlewood theorem for trigonometric series with $\alpha$-monotone coefficients},
     journal = {Sbornik. Mathematics},
     pages = {1617--1631},
     publisher = {mathdoc},
     volume = {200},
     number = {11},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_11_a2/}
}
                      
                      
                    TY - JOUR AU - M. I. Dyachenko AU - E. D. Nursultanov TI - Hardy-Littlewood theorem for trigonometric series with $\alpha$-monotone coefficients JO - Sbornik. Mathematics PY - 2009 SP - 1617 EP - 1631 VL - 200 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2009_200_11_a2/ LA - en ID - SM_2009_200_11_a2 ER -
M. I. Dyachenko; E. D. Nursultanov. Hardy-Littlewood theorem for trigonometric series with $\alpha$-monotone coefficients. Sbornik. Mathematics, Tome 200 (2009) no. 11, pp. 1617-1631. http://geodesic.mathdoc.fr/item/SM_2009_200_11_a2/
