Hardy-Littlewood theorem for trigonometric series with $\alpha$-monotone coefficients
Sbornik. Mathematics, Tome 200 (2009) no. 11, pp. 1617-1631 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Hardy-Littlewood theorem is established for trigonometric series with $\alpha$-monotone coefficients. Inequalities of Hardy-Littlewood kind are proved. Examples of series demonstrating that the results obtained are sharp are constructed. Bibliography: 15 titles.
Keywords: generalized monotone coefficients, Hardy-Littlewood theorem.
@article{SM_2009_200_11_a2,
     author = {M. I. Dyachenko and E. D. Nursultanov},
     title = {Hardy-Littlewood theorem for trigonometric series with $\alpha$-monotone coefficients},
     journal = {Sbornik. Mathematics},
     pages = {1617--1631},
     year = {2009},
     volume = {200},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_11_a2/}
}
TY  - JOUR
AU  - M. I. Dyachenko
AU  - E. D. Nursultanov
TI  - Hardy-Littlewood theorem for trigonometric series with $\alpha$-monotone coefficients
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 1617
EP  - 1631
VL  - 200
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_11_a2/
LA  - en
ID  - SM_2009_200_11_a2
ER  - 
%0 Journal Article
%A M. I. Dyachenko
%A E. D. Nursultanov
%T Hardy-Littlewood theorem for trigonometric series with $\alpha$-monotone coefficients
%J Sbornik. Mathematics
%D 2009
%P 1617-1631
%V 200
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2009_200_11_a2/
%G en
%F SM_2009_200_11_a2
M. I. Dyachenko; E. D. Nursultanov. Hardy-Littlewood theorem for trigonometric series with $\alpha$-monotone coefficients. Sbornik. Mathematics, Tome 200 (2009) no. 11, pp. 1617-1631. http://geodesic.mathdoc.fr/item/SM_2009_200_11_a2/

[1] E. M. Semenov, “Interpolation of linear operators and estimates of Fourier coefficients”, Soviet Math. Dokl., 8 (1967), 1315–1319 | MR | Zbl

[2] A. B. Gulisashvili, “Distribution functions and trigonometric series with monotonically decreasing coefficients”, Math. Notes, 10:1 (1971), 427–430 | DOI | MR | Zbl | Zbl

[3] V. A. Rodin, “The Hardy–Littlewood theorem for the cosine series in a symmetric space”, Math. Notes, 20:2 (1976), 693–696 | DOI | MR | Zbl | Zbl

[4] V. A. Rodin, “On membership of the sum of a cosine series with monotone coefficients in a symmetric space”, Soviet Math. (Iz. VUZ), 23:8 (1979), 61–65 | MR | Zbl | Zbl

[5] E. D. Nursultanov, “Net spaces and inequalities of Hardy–Littlewood type”, Sb. Math., 189:3 (1998), 399–419 | DOI | MR | Zbl

[6] S. Tikhonov, “Trigonometric series with general monotone coefficients”, J. Math. Anal. Appl., 326:1 (2007), 721–735 | DOI | MR | Zbl

[7] M. Dyachenko, S. Tikhonov, “A Hardy–Littlewood theorem for multiple series”, J. Math. Anal. Appl., 339:1 (2008), 503–510 | DOI | MR | Zbl

[8] M. I. D'yachenko, “Trigonometric series with generalized-monotone coefficients”, Soviet Math. (Iz. VUZ), 30:7 (1986), 54–66 | MR | Zbl

[9] M. I. Dyachenko, “Trigonometricheskie ryady s obobschenno-monotonnymi koeffitsientami i teorema Khardi–Littlvuda”, Teoriya funktsii, ee prilozheniya i smezhnye voprosy (Kazan, 2003), Tr. matem. tsentra im. N. I. Lobachevskogo, 19, DAS, Kazan, 2003, 96–98 | MR | Zbl

[10] M. I. D'yachenko, “The Hardy–Littlewood theorem for trigonometric series with generalized monotone coefficients”, Russian Math. (Iz. VUZ), 52:5 (2008), 32–40 | DOI | MR | Zbl

[11] M. I. Dyachenko, “Ob odnom obobschenii teoremy Khardi–Littlvuda”, Trudy mezhdunarodnoi shkoly-seminara po geometrii i analizu pamyati N. V. Efimova, Abrau-Dyurso, 2004, 99–100

[12] J. Bergh, J. Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, 223, Springer-Verlag, Berlin–Heidelberg–New York, 1976 | MR | MR | Zbl

[13] A. Zygmund, Trigonometric series, vols. I, II, Cambridge Univ. Press, New York, 1959 | MR | Zbl | Zbl

[14] A. F. Andersen, “Comparison theorems in the theory of Cesàro summability”, Proc. London Math. Soc. (2), 27:1 (1928), 39–71 | DOI | Zbl

[15] B. V. Simonov, S. Yu. Tikhonov, “Embedding theorems in constructive approximation”, Sb. Math., 199:9 (2008), 1367–1407 | DOI | MR | Zbl