Groups of $S$-units in hyperelliptic fields and continued fractions
Sbornik. Mathematics, Tome 200 (2009) no. 11, pp. 1587-1615 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

New methods for calculating fundamental $S$-units in hyperelliptic fields are found. Continued fractions in function fields are investigated. As an application, it is proved that if a valuation is defined by a linear polynomial, then a fundamental $S$-unit in a hyperelliptic field can be found by expanding certain elements into continued fractions. Bibliography: 11 titles.
Keywords: $S$-units, hyperelliptic fields, continued fractions, best approximations.
Mots-clés : valuations
@article{SM_2009_200_11_a1,
     author = {V. V. Benyash-Krivets and V. P. Platonov},
     title = {Groups of $S$-units in hyperelliptic fields and continued fractions},
     journal = {Sbornik. Mathematics},
     pages = {1587--1615},
     year = {2009},
     volume = {200},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_11_a1/}
}
TY  - JOUR
AU  - V. V. Benyash-Krivets
AU  - V. P. Platonov
TI  - Groups of $S$-units in hyperelliptic fields and continued fractions
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 1587
EP  - 1615
VL  - 200
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_11_a1/
LA  - en
ID  - SM_2009_200_11_a1
ER  - 
%0 Journal Article
%A V. V. Benyash-Krivets
%A V. P. Platonov
%T Groups of $S$-units in hyperelliptic fields and continued fractions
%J Sbornik. Mathematics
%D 2009
%P 1587-1615
%V 200
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2009_200_11_a1/
%G en
%F SM_2009_200_11_a1
V. V. Benyash-Krivets; V. P. Platonov. Groups of $S$-units in hyperelliptic fields and continued fractions. Sbornik. Mathematics, Tome 200 (2009) no. 11, pp. 1587-1615. http://geodesic.mathdoc.fr/item/SM_2009_200_11_a1/

[1] V. V. Benyash-Krivets, V. P. Platonov, “$S$-units in hyperelliptic fields”, Russian Math. Surveys, 62:4 (2007), 784–786 | DOI | MR | Zbl

[2] V. V. Benyash-Krivets, V. P. Platonov, “Groups of $S$-units in hyperelliptic fields”, Dokl. Math., 76:3 (2007), 886–890 | DOI | MR | Zbl

[3] V. V. Benyash-Krivets, V. P. Platonov, “Continued fractions and $S$-units in hyperelliptic fields”, Russian Math. Surveys, 63:2 (2008), 357–359 | DOI | Zbl

[4] V. V. Benyash-Krivets, V. P. Platonov, “Continued fractions and $S$-units in function fields”, Dokl. Math., 78:3 (2008), 833–838 | DOI | MR

[5] A. Weil, Basic number theory, Springer-Verlag, New York, 1967 | MR | MR | Zbl

[6] I. S. Iohvidov, Hankel and Toeplitz matrices and forms. Algebraic theory, Birkhäuser, Boston–Basel–Stuttgart, 1982 | MR | MR | Zbl | Zbl

[7] A. Böttcher, K. Rost, “Topics in the numerical linear algebra of Toeplitz and Hankel matrices”, GAMM Mitt. Ges. Angew. Math. Mech., 27:2 (2004), 174–188 | MR | Zbl

[8] E. Artin, “Quadratische Körper im Gebiete der höheren Kongruenzen. I”, Math. Z., 19:1 (1924), 153–206 | DOI | MR | Zbl

[9] S. Lang, Introduction to diophantine approximations, Addison-Wesley, Reading, MA–London–Don Mills, ON, 1966 | MR | Zbl | Zbl

[10] W. W. Adams, M. J. Razar, “Multiples of points on elliptic curves and continued fractions”, Proc. London Math. Soc. (3), 41:3 (1980), 481–498 | DOI | MR | Zbl

[11] A. I. Borevich, I. R. Shafarevich, Number theory, Academic Press, New York–London, 1966 | MR | MR | Zbl | Zbl