Groups of $S$-units in hyperelliptic fields and continued fractions
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 200 (2009) no. 11, pp. 1587-1615
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			New methods for calculating fundamental $S$-units in hyperelliptic fields are found. Continued fractions in
function fields are investigated. As an application, it is proved that if a valuation is defined by a linear
polynomial, then a fundamental $S$-unit in a hyperelliptic field can be found by expanding certain elements into continued fractions.
Bibliography: 11 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
$S$-units, hyperelliptic fields, continued fractions, best approximations.
Mots-clés : valuations
                    
                  
                
                
                Mots-clés : valuations
@article{SM_2009_200_11_a1,
     author = {V. V. Benyash-Krivets and V. P. Platonov},
     title = {Groups of $S$-units in hyperelliptic fields and continued fractions},
     journal = {Sbornik. Mathematics},
     pages = {1587--1615},
     publisher = {mathdoc},
     volume = {200},
     number = {11},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_11_a1/}
}
                      
                      
                    TY - JOUR AU - V. V. Benyash-Krivets AU - V. P. Platonov TI - Groups of $S$-units in hyperelliptic fields and continued fractions JO - Sbornik. Mathematics PY - 2009 SP - 1587 EP - 1615 VL - 200 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2009_200_11_a1/ LA - en ID - SM_2009_200_11_a1 ER -
V. V. Benyash-Krivets; V. P. Platonov. Groups of $S$-units in hyperelliptic fields and continued fractions. Sbornik. Mathematics, Tome 200 (2009) no. 11, pp. 1587-1615. http://geodesic.mathdoc.fr/item/SM_2009_200_11_a1/
