Groups of $S$-units in hyperelliptic fields and continued fractions
Sbornik. Mathematics, Tome 200 (2009) no. 11, pp. 1587-1615

Voir la notice de l'article provenant de la source Math-Net.Ru

New methods for calculating fundamental $S$-units in hyperelliptic fields are found. Continued fractions in function fields are investigated. As an application, it is proved that if a valuation is defined by a linear polynomial, then a fundamental $S$-unit in a hyperelliptic field can be found by expanding certain elements into continued fractions. Bibliography: 11 titles.
Keywords: $S$-units, hyperelliptic fields, continued fractions, best approximations.
Mots-clés : valuations
@article{SM_2009_200_11_a1,
     author = {V. V. Benyash-Krivets and V. P. Platonov},
     title = {Groups of $S$-units in hyperelliptic fields and continued fractions},
     journal = {Sbornik. Mathematics},
     pages = {1587--1615},
     publisher = {mathdoc},
     volume = {200},
     number = {11},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_11_a1/}
}
TY  - JOUR
AU  - V. V. Benyash-Krivets
AU  - V. P. Platonov
TI  - Groups of $S$-units in hyperelliptic fields and continued fractions
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 1587
EP  - 1615
VL  - 200
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_11_a1/
LA  - en
ID  - SM_2009_200_11_a1
ER  - 
%0 Journal Article
%A V. V. Benyash-Krivets
%A V. P. Platonov
%T Groups of $S$-units in hyperelliptic fields and continued fractions
%J Sbornik. Mathematics
%D 2009
%P 1587-1615
%V 200
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2009_200_11_a1/
%G en
%F SM_2009_200_11_a1
V. V. Benyash-Krivets; V. P. Platonov. Groups of $S$-units in hyperelliptic fields and continued fractions. Sbornik. Mathematics, Tome 200 (2009) no. 11, pp. 1587-1615. http://geodesic.mathdoc.fr/item/SM_2009_200_11_a1/