Extrinsic geometric properties of the Rozendorn surface,
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 200 (2009) no. 11, pp. 1575-1586
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The lengths of the normal curvature vectors on the Rozendorn surface $F^2$ are shown to be uniformly bounded above on the whole of the surface. A regular three-dimensional submanifold $F^3$,
$F^2\subset F^3 \subset E^5$, is constructed in the form of a regular leaf whose sectional curvatures in the two-dimensional directions tangent to $F^2$ are strictly negative and bounded away from zero.
Bibliography: 9 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
ellipse of normal curvature, normal connection, sectional curvature.
                    
                    
                    
                  
                
                
                @article{SM_2009_200_11_a0,
     author = {Yu. A. Aminov},
     title = {Extrinsic geometric properties of the {Rozendorn} surface,},
     journal = {Sbornik. Mathematics},
     pages = {1575--1586},
     publisher = {mathdoc},
     volume = {200},
     number = {11},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_11_a0/}
}
                      
                      
                    Yu. A. Aminov. Extrinsic geometric properties of the Rozendorn surface,. Sbornik. Mathematics, Tome 200 (2009) no. 11, pp. 1575-1586. http://geodesic.mathdoc.fr/item/SM_2009_200_11_a0/
