Extrinsic geometric properties of the Rozendorn surface,
Sbornik. Mathematics, Tome 200 (2009) no. 11, pp. 1575-1586

Voir la notice de l'article provenant de la source Math-Net.Ru

The lengths of the normal curvature vectors on the Rozendorn surface $F^2$ are shown to be uniformly bounded above on the whole of the surface. A regular three-dimensional submanifold $F^3$, $F^2\subset F^3 \subset E^5$, is constructed in the form of a regular leaf whose sectional curvatures in the two-dimensional directions tangent to $F^2$ are strictly negative and bounded away from zero. Bibliography: 9 titles.
Keywords: ellipse of normal curvature, normal connection, sectional curvature.
@article{SM_2009_200_11_a0,
     author = {Yu. A. Aminov},
     title = {Extrinsic geometric properties of the {Rozendorn} surface,},
     journal = {Sbornik. Mathematics},
     pages = {1575--1586},
     publisher = {mathdoc},
     volume = {200},
     number = {11},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_11_a0/}
}
TY  - JOUR
AU  - Yu. A. Aminov
TI  - Extrinsic geometric properties of the Rozendorn surface,
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 1575
EP  - 1586
VL  - 200
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_11_a0/
LA  - en
ID  - SM_2009_200_11_a0
ER  - 
%0 Journal Article
%A Yu. A. Aminov
%T Extrinsic geometric properties of the Rozendorn surface,
%J Sbornik. Mathematics
%D 2009
%P 1575-1586
%V 200
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2009_200_11_a0/
%G en
%F SM_2009_200_11_a0
Yu. A. Aminov. Extrinsic geometric properties of the Rozendorn surface,. Sbornik. Mathematics, Tome 200 (2009) no. 11, pp. 1575-1586. http://geodesic.mathdoc.fr/item/SM_2009_200_11_a0/