Extrinsic geometric properties of the Rozendorn surface,
Sbornik. Mathematics, Tome 200 (2009) no. 11, pp. 1575-1586 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The lengths of the normal curvature vectors on the Rozendorn surface $F^2$ are shown to be uniformly bounded above on the whole of the surface. A regular three-dimensional submanifold $F^3$, $F^2\subset F^3 \subset E^5$, is constructed in the form of a regular leaf whose sectional curvatures in the two-dimensional directions tangent to $F^2$ are strictly negative and bounded away from zero. Bibliography: 9 titles.
Keywords: ellipse of normal curvature, normal connection, sectional curvature.
@article{SM_2009_200_11_a0,
     author = {Yu. A. Aminov},
     title = {Extrinsic geometric properties of the {Rozendorn} surface,},
     journal = {Sbornik. Mathematics},
     pages = {1575--1586},
     year = {2009},
     volume = {200},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_11_a0/}
}
TY  - JOUR
AU  - Yu. A. Aminov
TI  - Extrinsic geometric properties of the Rozendorn surface,
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 1575
EP  - 1586
VL  - 200
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_11_a0/
LA  - en
ID  - SM_2009_200_11_a0
ER  - 
%0 Journal Article
%A Yu. A. Aminov
%T Extrinsic geometric properties of the Rozendorn surface,
%J Sbornik. Mathematics
%D 2009
%P 1575-1586
%V 200
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2009_200_11_a0/
%G en
%F SM_2009_200_11_a0
Yu. A. Aminov. Extrinsic geometric properties of the Rozendorn surface,. Sbornik. Mathematics, Tome 200 (2009) no. 11, pp. 1575-1586. http://geodesic.mathdoc.fr/item/SM_2009_200_11_a0/

[1] N. V. Efimov, “Issledovanie polnoi poverkhnosti otritsatelnoi krivizny”, Dokl. AN SSSR, 93:3 (1953), 393–395 | MR | Zbl

[2] N. V. Efimov, “Issledovanie odnoznachnoi proektsii poverkhnosti otritsatelnoi krivizny”, Dokl. AN SSSR, 93:4 (1953), 609–611 | MR | Zbl

[3] N. V. Efimov, “Vozniknovenie osobennostei na poverkhnostyakh otritsatelnoi krivizny”, Matem. sb., 64(106):2 (1964), 286–320 | MR | Zbl

[4] D. Blanuša, “Über die Einbettung hyperbolischer Räume in euklidische Räume”, Monatsh. Math., 59:3 (1955), 217–229 | DOI | MR | Zbl

[5] E. G. Poznyak, “Isometric immersions of two-dimensional riemannian metrics in Euclidean space”, Russian Math. Surveys, 28:4 (1973), 47–77 | DOI | MR | Zbl | Zbl

[6] E. R. Rozendorn, “Realizatsiya metriki $ds^2=du^2+f^2(u)dv^2$ v pyatimernom evklidovom prostranstve”, Dokl. AN ArmSSR, 30:4 (1960), 197–199 | MR | Zbl

[7] M. Gromov, Partial differential relations, Ergeb. Math. Grenzgeb. (3), 9, Springer-Verlag, Berlin, 1986 | MR | MR | Zbl

[8] D. V. Bolotov, “On isometric immersions with flat normal connection of the hyperbolic space $L^n$ into Euclidean space $E^{n+m}$”, Math. Notes, 82:1–2 (2007), 10–12 | DOI | MR

[9] L. P. Eisenhart, Riemannian Geometry, Princeton Univ. Press, Princeton, NJ, 1926 | MR | Zbl