Pure subrings of the rings $\mathbb Z_\chi$
Sbornik. Mathematics, Tome 200 (2009) no. 10, pp. 1537-1563 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Pure subrings of finite rank in the $\mathbb Z$-adic completion of the ring of integers and in its homomorphic images are considered. Certain properties of these rings are studied (existence of an identity element, decomposability into a direct sum of essentially indecomposable ideals, condition for embeddability into a $csp$-ring, etc.). Additive groups of these rings and conditions under which these rings are subrings of algebraic number fields are described. Bibliography: 12 titles.
Keywords: ring of universal integers, ring of pseudorational numbers, $csp$-ring
Mots-clés : quotient divisible group.
@article{SM_2009_200_10_a6,
     author = {A. V. Tsarev},
     title = {Pure subrings of the rings $\mathbb Z_\chi$},
     journal = {Sbornik. Mathematics},
     pages = {1537--1563},
     year = {2009},
     volume = {200},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_10_a6/}
}
TY  - JOUR
AU  - A. V. Tsarev
TI  - Pure subrings of the rings $\mathbb Z_\chi$
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 1537
EP  - 1563
VL  - 200
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_10_a6/
LA  - en
ID  - SM_2009_200_10_a6
ER  - 
%0 Journal Article
%A A. V. Tsarev
%T Pure subrings of the rings $\mathbb Z_\chi$
%J Sbornik. Mathematics
%D 2009
%P 1537-1563
%V 200
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2009_200_10_a6/
%G en
%F SM_2009_200_10_a6
A. V. Tsarev. Pure subrings of the rings $\mathbb Z_\chi$. Sbornik. Mathematics, Tome 200 (2009) no. 10, pp. 1537-1563. http://geodesic.mathdoc.fr/item/SM_2009_200_10_a6/

[1] L. Fuchs, Infinite Abelian groups, vol. I, II, Pure and Applied Mathematics, 36, Academic Press, New York–London, 1970, 1973 | MR | MR | MR | MR | Zbl | Zbl

[2] P. A. Krylov, “Smeshannye abelevy gruppy kak moduli nad svoimi koltsami endomorfizmov”, Fundament. i prikl. matem., 6:3 (2000), 793–812 | MR | Zbl

[3] A. A. Fomin, “Some mixed Abelian groups as modules over the ring of pseudo-rational numbers”, Abelian groups and modules (Dublin, Ireland, 1998), Trends Math., Birkhäeuser, Basel, 1999, 87–100 | MR | Zbl

[4] L. Fuchs, I. Halperin, “On the imbedding of a regular ring in a regular ring with identity”, Fund. Math., 54 (1964), 285–290 | MR | Zbl

[5] L. Fuchs, K. M. Rangaswamy, “On generalized regular rings”, Math. Z., 107:1 (1968), 71–81 | DOI | MR | Zbl

[6] S. Glaz, W. Wickless, “Regular and principal projective endomorphism rings of mixed Abelian groups”, Comm. Algebra, 22:4 (1994), 1161–1176 | DOI | MR | Zbl

[7] A. Fomin, W. Wickless, “Quotient divisible Abelian groups”, Proc. Amer. Math. Soc., 126:1 (1998), 45–52 | DOI | MR | Zbl

[8] A. A. Fomin, “Quotient divisible mixed groups”, Abelian groups, rings and modules (Perth, Australia, 2000), Contemp. Math., 273, Amer. Math. Soc., Providence, RI, 2001, 117–128 | MR | Zbl

[9] R. A. Beaumont, R. S. Pierce, “Torsion-free rings”, Illinois J. Math., 5 (1961), 61–98 | MR | Zbl

[10] E. G. Zinovev, “Ob odnom obobschenii kolets psevdoratsionalnykh chisel”, Vestn. TomGU, 290 (2006), 46–47

[11] C. E. Murley, “The classification of certain classes of torsion free Abelian groups”, Pasific J. Math., 40 (1972), 647–665 | MR | Zbl

[12] O. I. Davydova, “Rank-1 quotient divisible groups”, J. Math. Sci. (N. Y.), 154:3 (2008), 295–300 | DOI | MR | Zbl