Pure subrings of the rings $\mathbb Z_\chi$
Sbornik. Mathematics, Tome 200 (2009) no. 10, pp. 1537-1563

Voir la notice de l'article provenant de la source Math-Net.Ru

Pure subrings of finite rank in the $\mathbb Z$-adic completion of the ring of integers and in its homomorphic images are considered. Certain properties of these rings are studied (existence of an identity element, decomposability into a direct sum of essentially indecomposable ideals, condition for embeddability into a $csp$-ring, etc.). Additive groups of these rings and conditions under which these rings are subrings of algebraic number fields are described. Bibliography: 12 titles.
Keywords: ring of universal integers, ring of pseudorational numbers, $csp$-ring
Mots-clés : quotient divisible group.
@article{SM_2009_200_10_a6,
     author = {A. V. Tsarev},
     title = {Pure subrings of the rings $\mathbb Z_\chi$},
     journal = {Sbornik. Mathematics},
     pages = {1537--1563},
     publisher = {mathdoc},
     volume = {200},
     number = {10},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_10_a6/}
}
TY  - JOUR
AU  - A. V. Tsarev
TI  - Pure subrings of the rings $\mathbb Z_\chi$
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 1537
EP  - 1563
VL  - 200
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_10_a6/
LA  - en
ID  - SM_2009_200_10_a6
ER  - 
%0 Journal Article
%A A. V. Tsarev
%T Pure subrings of the rings $\mathbb Z_\chi$
%J Sbornik. Mathematics
%D 2009
%P 1537-1563
%V 200
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2009_200_10_a6/
%G en
%F SM_2009_200_10_a6
A. V. Tsarev. Pure subrings of the rings $\mathbb Z_\chi$. Sbornik. Mathematics, Tome 200 (2009) no. 10, pp. 1537-1563. http://geodesic.mathdoc.fr/item/SM_2009_200_10_a6/