Analogues of Chernoff's theorem and the Lie-Trotter theorem
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 200 (2009) no. 10, pp. 1495-1519
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper is concerned with the abstract Cauchy problem $\dot x=\mathrm{A}x$, $x(0)=x_0\in\mathscr{D}(\mathrm{A})$, where $\mathrm{A}$ is a densely defined linear operator on a Banach space $\mathbf X$. It is proved that a solution $x(\,\cdot\,)$ of this problem can be represented as the weak limit 
$\lim_{n\to\infty}\{\mathrm F(t/n)^nx_0\}$, where the function 
$\mathrm F\colon[0,\infty)\mapsto\mathscr L(\mathrm X)$ satisfies the equality
$\mathrm F'(0)y=\mathrm{A}y$, $y\in\mathscr{D}(\mathrm{A})$,
for a natural class of operators. As distinct from Chernoff's theorem, the existence of a global solution to the Cauchy problem is not assumed. Based on this result, necessary and sufficient conditions are found
for the linear operator $\mathrm{C}$ to be closable and for its closure to be the generator of a $C_0$-semigroup. Also, we obtain new criteria for the sum of two generators of $C_0$-semigroups to be the generator of a $C_0$-semigroup and for the Lie-Trotter formula to hold.
Bibliography: 13 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Chernoff's theorem; Lie-Trotter theorem; semigroup.
                    
                    
                    
                  
                
                
                @article{SM_2009_200_10_a4,
     author = {A. Yu. Neklyudov},
     title = {Analogues of {Chernoff's} theorem and the {Lie-Trotter} theorem},
     journal = {Sbornik. Mathematics},
     pages = {1495--1519},
     publisher = {mathdoc},
     volume = {200},
     number = {10},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_10_a4/}
}
                      
                      
                    A. Yu. Neklyudov. Analogues of Chernoff's theorem and the Lie-Trotter theorem. Sbornik. Mathematics, Tome 200 (2009) no. 10, pp. 1495-1519. http://geodesic.mathdoc.fr/item/SM_2009_200_10_a4/
