Analogues of Chernoff's theorem and the Lie-Trotter theorem
Sbornik. Mathematics, Tome 200 (2009) no. 10, pp. 1495-1519

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with the abstract Cauchy problem $\dot x=\mathrm{A}x$, $x(0)=x_0\in\mathscr{D}(\mathrm{A})$, where $\mathrm{A}$ is a densely defined linear operator on a Banach space $\mathbf X$. It is proved that a solution $x(\,\cdot\,)$ of this problem can be represented as the weak limit $\lim_{n\to\infty}\{\mathrm F(t/n)^nx_0\}$, where the function $\mathrm F\colon[0,\infty)\mapsto\mathscr L(\mathrm X)$ satisfies the equality $\mathrm F'(0)y=\mathrm{A}y$, $y\in\mathscr{D}(\mathrm{A})$, for a natural class of operators. As distinct from Chernoff's theorem, the existence of a global solution to the Cauchy problem is not assumed. Based on this result, necessary and sufficient conditions are found for the linear operator $\mathrm{C}$ to be closable and for its closure to be the generator of a $C_0$-semigroup. Also, we obtain new criteria for the sum of two generators of $C_0$-semigroups to be the generator of a $C_0$-semigroup and for the Lie-Trotter formula to hold. Bibliography: 13 titles.
Keywords: Chernoff's theorem; Lie-Trotter theorem; semigroup.
@article{SM_2009_200_10_a4,
     author = {A. Yu. Neklyudov},
     title = {Analogues of {Chernoff's} theorem and the {Lie-Trotter} theorem},
     journal = {Sbornik. Mathematics},
     pages = {1495--1519},
     publisher = {mathdoc},
     volume = {200},
     number = {10},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_10_a4/}
}
TY  - JOUR
AU  - A. Yu. Neklyudov
TI  - Analogues of Chernoff's theorem and the Lie-Trotter theorem
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 1495
EP  - 1519
VL  - 200
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_10_a4/
LA  - en
ID  - SM_2009_200_10_a4
ER  - 
%0 Journal Article
%A A. Yu. Neklyudov
%T Analogues of Chernoff's theorem and the Lie-Trotter theorem
%J Sbornik. Mathematics
%D 2009
%P 1495-1519
%V 200
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2009_200_10_a4/
%G en
%F SM_2009_200_10_a4
A. Yu. Neklyudov. Analogues of Chernoff's theorem and the Lie-Trotter theorem. Sbornik. Mathematics, Tome 200 (2009) no. 10, pp. 1495-1519. http://geodesic.mathdoc.fr/item/SM_2009_200_10_a4/