Analogues of Chernoff's theorem and the Lie-Trotter theorem
Sbornik. Mathematics, Tome 200 (2009) no. 10, pp. 1495-1519 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is concerned with the abstract Cauchy problem $\dot x=\mathrm{A}x$, $x(0)=x_0\in\mathscr{D}(\mathrm{A})$, where $\mathrm{A}$ is a densely defined linear operator on a Banach space $\mathbf X$. It is proved that a solution $x(\,\cdot\,)$ of this problem can be represented as the weak limit $\lim_{n\to\infty}\{\mathrm F(t/n)^nx_0\}$, where the function $\mathrm F\colon[0,\infty)\mapsto\mathscr L(\mathrm X)$ satisfies the equality $\mathrm F'(0)y=\mathrm{A}y$, $y\in\mathscr{D}(\mathrm{A})$, for a natural class of operators. As distinct from Chernoff's theorem, the existence of a global solution to the Cauchy problem is not assumed. Based on this result, necessary and sufficient conditions are found for the linear operator $\mathrm{C}$ to be closable and for its closure to be the generator of a $C_0$-semigroup. Also, we obtain new criteria for the sum of two generators of $C_0$-semigroups to be the generator of a $C_0$-semigroup and for the Lie-Trotter formula to hold. Bibliography: 13 titles.
Keywords: Chernoff's theorem; Lie-Trotter theorem; semigroup.
@article{SM_2009_200_10_a4,
     author = {A. Yu. Neklyudov},
     title = {Analogues of {Chernoff's} theorem and the {Lie-Trotter} theorem},
     journal = {Sbornik. Mathematics},
     pages = {1495--1519},
     year = {2009},
     volume = {200},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_10_a4/}
}
TY  - JOUR
AU  - A. Yu. Neklyudov
TI  - Analogues of Chernoff's theorem and the Lie-Trotter theorem
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 1495
EP  - 1519
VL  - 200
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_10_a4/
LA  - en
ID  - SM_2009_200_10_a4
ER  - 
%0 Journal Article
%A A. Yu. Neklyudov
%T Analogues of Chernoff's theorem and the Lie-Trotter theorem
%J Sbornik. Mathematics
%D 2009
%P 1495-1519
%V 200
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2009_200_10_a4/
%G en
%F SM_2009_200_10_a4
A. Yu. Neklyudov. Analogues of Chernoff's theorem and the Lie-Trotter theorem. Sbornik. Mathematics, Tome 200 (2009) no. 10, pp. 1495-1519. http://geodesic.mathdoc.fr/item/SM_2009_200_10_a4/

[1] P. R. Chernoff, “Note on product formulas for operator semigroups”, J. Functional Analysis, 2:2 (1968), 238–242 | DOI | MR | Zbl

[2] H. F. Trotter, “On the product of semi-groups of operators”, Proc. Amer. Math. Soc., 10:4 (1959), 545–551 | DOI | MR | Zbl

[3] O. G. Smolyanov, E. T. Shavgulidze, Kontinualnye integraly, Izd-vo MGU, M., 1990 | MR | Zbl

[4] V. V. Smirnov, “A note on the limiting procedures for path integrals”, J. Phys. A, 41:3 (2008), 035306 | DOI | MR | Zbl

[5] O. G. Smolyanov, A. G. Tokarev, A. Truman, “Hamiltonian Feynman path integrals via the Chernoff formula”, J. Math. Phys., 43:10 (2002), 5161–5171 | DOI | MR | Zbl

[6] O. G. Smolyanov, H. v. Weizsäcker, O. Wittich, “Chernoff's theorem and discrete time approximations of Brownian motion on manifolds”, Potential Anal., 26:1 (2007), 1–29 | DOI | MR | Zbl

[7] O. G. Smolyanov, H. von Weizsäcker, O. Wittich, “Brownian motion on a manifold as limit of stepwise conditioned standard Brownian motions”, Stochastic processes, physics and geometry: New interplays. II, Proc. of the conference on infinite dimensional (stochastic) analysis and quantum physics (Leipzig, Germany, 1999), CMS Conf. Proc., 29, Amer. Math. Soc., Providence, RI, 2000, 589–602 | MR | Zbl

[8] H. von Weizsäcker, O. G. Smolyanov, O. Wittich, “Diffusion on compact Riemannian manifolds, and surface measures”, Dokl. Math., 61:2 (2000), 230–234 | MR | Zbl

[9] K.-J. Engel, R. Nagel, “One-parameter semigroups for linear evolution equations”, Grad. Texts in Math., 194, Springer-Verlag, New York–Berlin, 2000 | MR | Zbl

[10] E. B. Davies, One-parameter semigroups, London Math. Soc. Monogr., 15, Academic Press, London–New York, 1980 | MR | Zbl

[11] F. Kühnemund, M. Wacker, “The Lie–Trotter product formula does not hold for arbitrary sums of generators”, Semigroup Forum, 60:3 (2000), 478–485 | DOI | MR | Zbl

[12] A. G. Tokarev, “Counterexamples to the Trotter formula in locally compact spaces”, Math. Notes, 59:6 (1996), 689–692 | DOI | MR | Zbl

[13] A. Yu. Neklyudov, “Inversion of Chernoff's theorem”, Math. Notes, 83:3–4 (2008), 530–538 | DOI | MR | Zbl