The Dirichlet problem for polyanalytic functions
Sbornik. Mathematics, Tome 200 (2009) no. 10, pp. 1473-1493

Voir la notice de l'article provenant de la source Math-Net.Ru

Connections between the boundary behaviour of polyanalytic functions and the structure of the boundary are investigated. In particular, a Jordan domain with Lipschitz boundary is constructed which is regular for the Dirichlet problem in the class of bianalytic functions. Bibliography: 14 titles.
Keywords: polyanalytic functions, boundary properties, Luzin-Privalov construction, univalent functions, lacunary series, Rudin-Carleson theorem.
@article{SM_2009_200_10_a3,
     author = {M. Ya. Mazalov},
     title = {The {Dirichlet} problem for polyanalytic functions},
     journal = {Sbornik. Mathematics},
     pages = {1473--1493},
     publisher = {mathdoc},
     volume = {200},
     number = {10},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_10_a3/}
}
TY  - JOUR
AU  - M. Ya. Mazalov
TI  - The Dirichlet problem for polyanalytic functions
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 1473
EP  - 1493
VL  - 200
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_10_a3/
LA  - en
ID  - SM_2009_200_10_a3
ER  - 
%0 Journal Article
%A M. Ya. Mazalov
%T The Dirichlet problem for polyanalytic functions
%J Sbornik. Mathematics
%D 2009
%P 1473-1493
%V 200
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2009_200_10_a3/
%G en
%F SM_2009_200_10_a3
M. Ya. Mazalov. The Dirichlet problem for polyanalytic functions. Sbornik. Mathematics, Tome 200 (2009) no. 10, pp. 1473-1493. http://geodesic.mathdoc.fr/item/SM_2009_200_10_a3/