Theorems of Borsuk-Ulam type for flats and common transversals of families of convex compact sets
Sbornik. Mathematics, Tome 200 (2009) no. 10, pp. 1453-1471 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Several results on the topology of the space of $k$-flats in $\mathbb R^n$ similar to the Borsuk-Ulam theorem on coverings of a sphere and a ball are proved. Some corollaries on common transversals for families of subsets of $\mathbb R^n$ and on measure partitions by hyperplanes are deduced. Bibliography: 22 titles.
Keywords: Borsuk-Ulam theorem, common transversals, Helly-type theorems.
@article{SM_2009_200_10_a2,
     author = {R. N. Karasev},
     title = {Theorems of {Borsuk-Ulam} type for flats and common transversals of families of convex compact sets},
     journal = {Sbornik. Mathematics},
     pages = {1453--1471},
     year = {2009},
     volume = {200},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_10_a2/}
}
TY  - JOUR
AU  - R. N. Karasev
TI  - Theorems of Borsuk-Ulam type for flats and common transversals of families of convex compact sets
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 1453
EP  - 1471
VL  - 200
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_10_a2/
LA  - en
ID  - SM_2009_200_10_a2
ER  - 
%0 Journal Article
%A R. N. Karasev
%T Theorems of Borsuk-Ulam type for flats and common transversals of families of convex compact sets
%J Sbornik. Mathematics
%D 2009
%P 1453-1471
%V 200
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2009_200_10_a2/
%G en
%F SM_2009_200_10_a2
R. N. Karasev. Theorems of Borsuk-Ulam type for flats and common transversals of families of convex compact sets. Sbornik. Mathematics, Tome 200 (2009) no. 10, pp. 1453-1471. http://geodesic.mathdoc.fr/item/SM_2009_200_10_a2/

[1] K. Borsuk, “Drei Sätze über die $n$-dimensionale euklidische Sphäre”, Fund. Math., 20 (1933), 177–190 | Zbl

[2] E. Helly, “Über Mengen konvexer Körper mit gemeinschaftlichen Punkten”, Jahresber. Deutsch. Math.-Verein., 32 (1923), 175–176 | Zbl

[3] I. Bárány, “A generalization of Carathéodory's theorem”, Discrete Math., 40:2–3 (1982), 141–152 | DOI | MR | Zbl

[4] V. L. Dol'nikov, “Generalized transversals of families of sets in $\mathbb R^n$ and connections between the Helly and Borsuk theorems”, Soviet Math. Dokl., 36:3 (1988), 519–522 | MR | Zbl

[5] S. E. Cappell, J. E. Goodman, J. Pach, R. Pollack, M. Sharir, R. Wenger, “Common tangents and common transversals”, Adv. Math., 106:2 (1994), 198–215 | DOI | MR | Zbl

[6] A. Horn, “Some generalizations of Helly's theorem on convex sets”, Bull. Amer. Math. Soc., 55 (1949), 923–929 | DOI | MR | Zbl

[7] V. L. Klee, jr., “On certain intersection properties of convex sets”, Canadian J. Math., 3 (1951), 272–275 | MR | Zbl

[8] A. H. Stone, J. W. Tukey, “Generalized “sandwich” theorems”, Duke Math. J., 9:2 (1942), 356–359 | DOI | MR | Zbl

[9] H. Steinhaus, “Sur la division des ensembles de l'espace par les plans et des ensembles plans par les cercles”, Fund. Math., 33 (1945), 245–263 | MR | Zbl

[10] T. Bisztriczky, “On separated families of convex bodies”, Arch. Math. (Basel), 54:2 (1990), 193–199 | DOI | MR | Zbl

[11] V. Klee, T. Lewis, B. Von Hohenbalken, “Appollonius revisited: supporting spheres for sundered systems”, Discrete Comput. Geom., 18:4 (1997), 385–395 | DOI | MR | Zbl

[12] V. V. Makeev, “Some extremal problems for vector bundles”, St. Petersburg Math. J., 19:2 (2007), 261–277 | DOI | MR | Zbl

[13] W.-Y. Hsiang, Cohomology theory of topological transformation groups, Springer Verlag, Berlin–Heidelberg–New-York, 1975 | MR | Zbl

[14] A. Yu. Volovikov, E. V. Shchepin, “Antipodes and embeddings”, Sb. Math., 196:1 (2005), 1–28 | DOI | MR | Zbl

[15] R. N. Karasev, “Colored versions of the Sperner theorem and the KKM theorem”, Third Russian–German geometry meeting dedicated to 95th birthday of A. D. Alexandrov (St. Petersburg, 2007), St. Petersburg, 2007, 17–18

[16] M. Hall, jr., Combinatorial theory, Blaisdell, Waltham, MA–Toronto, ON–London, 1967 | MR | MR | Zbl | Zbl

[17] R. N. Karasev, “Raskrashennaya versiya lemmy Knastera–Kuratovskogo–Mazurkevicha”, Modelirovanie i analiz informatsionnykh sistem, 13:2 (2006), 66–70

[18] H. L. Hiller, “On the cohomology of real Grassmanians”, Trans. Amer. Math. Soc., 257:2 (1980), 521–533 | DOI | MR | Zbl

[19] H. L. Hiller, “On the height of the first Stiefel–Whitney class”, Proc. Amer. Math. Soc., 79:3 (1980), 495–498 | DOI | MR | Zbl

[20] G. E. Shilov, B. L. Gurevich, Integral, measure and derivative: a unified approach, Prentice-Hall, Englewood Cliffs, NJ, 1966 | MR | MR | Zbl | Zbl

[21] I. Bárány, A. Hubard, J. Jerónimo, “Slicing convex sets and measures by a hyperplane”, Discrete Comput. Geom., 39:1–3 (2008), 67–75 | DOI | MR | Zbl

[22] V. L. Dolnikov, Teoremy tipa Khelli dlya transversalei semeistv mnozhestv i ikh prilozheniya, Dis. ... dokt. fiz.-matem. nauk, Izd-vo YaGU, Yaroslavl, 2001