Theorems of Borsuk-Ulam type for flats and common transversals of families of convex compact sets
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 200 (2009) no. 10, pp. 1453-1471
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Several results on the topology of the space of $k$-flats in $\mathbb R^n$ similar to the Borsuk-Ulam theorem on coverings of a sphere and a ball are proved. Some corollaries on common transversals for families of subsets of $\mathbb R^n$ and on measure partitions by hyperplanes are deduced.
Bibliography: 22 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Borsuk-Ulam theorem, common transversals, Helly-type theorems.
                    
                    
                    
                  
                
                
                @article{SM_2009_200_10_a2,
     author = {R. N. Karasev},
     title = {Theorems of {Borsuk-Ulam} type for flats and common transversals of families of convex compact sets},
     journal = {Sbornik. Mathematics},
     pages = {1453--1471},
     publisher = {mathdoc},
     volume = {200},
     number = {10},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_10_a2/}
}
                      
                      
                    TY - JOUR AU - R. N. Karasev TI - Theorems of Borsuk-Ulam type for flats and common transversals of families of convex compact sets JO - Sbornik. Mathematics PY - 2009 SP - 1453 EP - 1471 VL - 200 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2009_200_10_a2/ LA - en ID - SM_2009_200_10_a2 ER -
R. N. Karasev. Theorems of Borsuk-Ulam type for flats and common transversals of families of convex compact sets. Sbornik. Mathematics, Tome 200 (2009) no. 10, pp. 1453-1471. http://geodesic.mathdoc.fr/item/SM_2009_200_10_a2/
