Quadratic forms involving Green's and Robin functions
Sbornik. Mathematics, Tome 200 (2009) no. 10, pp. 1439-1452 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

General inequalities for quadratic forms with coefficients depending on the values of Green's and Robin functions are obtained. These inequalities cover also the reduced moduli of strips and half-strips. Some applications of the results obtained to extremal partitioning problems and related questions of geometric function theory are discussed. Bibliography: 29 titles.
Keywords: Green's function, Robin function, reduced moduli, extremal decompositions, covering theorems.
@article{SM_2009_200_10_a1,
     author = {V. N. Dubinin},
     title = {Quadratic forms involving {Green's} and {Robin} functions},
     journal = {Sbornik. Mathematics},
     pages = {1439--1452},
     year = {2009},
     volume = {200},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2009_200_10_a1/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - Quadratic forms involving Green's and Robin functions
JO  - Sbornik. Mathematics
PY  - 2009
SP  - 1439
EP  - 1452
VL  - 200
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2009_200_10_a1/
LA  - en
ID  - SM_2009_200_10_a1
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T Quadratic forms involving Green's and Robin functions
%J Sbornik. Mathematics
%D 2009
%P 1439-1452
%V 200
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2009_200_10_a1/
%G en
%F SM_2009_200_10_a1
V. N. Dubinin. Quadratic forms involving Green's and Robin functions. Sbornik. Mathematics, Tome 200 (2009) no. 10, pp. 1439-1452. http://geodesic.mathdoc.fr/item/SM_2009_200_10_a1/

[1] G. M. Goluzin, Geometric theory of functions of a complex variable, Transl. Math. Monogr., 26, Amer. Math. Soc., Providence, RI, 1969 | MR | MR | Zbl | Zbl

[2] N. A. Lebedev, Printsip ploschadei v teorii odnolistnykh funktsii, Nauka, M., 1975 | MR | Zbl

[3] Z. Nehari, “Some inequalities in the theory of functions”, Trans. Amer. Math. Soc., 75:2 (1953), 256–286 | DOI | MR | Zbl

[4] P. L. Duren, M. M. Schiffer, “Robin functions and energy functionals of multiply connected domains”, Pacific J. Math., 148:2 (1991), 251–273 | MR | Zbl

[5] P. Duren, M. M. Schiffer, “Robin functions and distortion of capacity under conformal mapping”, Complex Variables Theory Appl., 21:3–4 (1993), 189–196 | MR | Zbl

[6] V. N. Dubinin, “Generalized condensers and the asymptotics of their capacities under degeneration of some plates”, J. Math. Sci. (N. Y.), 129:3 (2005), 3835–3842 | DOI | MR | Zbl

[7] V. N. Dubinin, E. G. Prilepkina, “On variational principles of conformal mappings”, St. Petersburg Math. J., 18:3 (2007), 373–389 | DOI | MR | Zbl

[8] V. N. Dubinin, “The symmetrization method in problems on nonoverlapping domains”, Math. USSR-Sb., 56:1 (1987), 107–119 | DOI | MR | Zbl | Zbl

[9] V. N. Dubinin, “Covering theorems in the theory of analytic functions”, J. Soviet Math., 43:4 (1988), 2553–2558 | DOI | MR | Zbl | Zbl

[10] V. N. Dubinin, “Covering theorems in the theory of analytic functions”, J. Soviet Math., 53:3 (1991), 252–263 | DOI | MR | Zbl | Zbl

[11] G. V. Kuz'mina, “Extremal properties of quadratic differentials with strip-shaped domains in the structure of the trajectories”, J. Soviet Math., 43:4 (1988), 2579–2591 | DOI | MR | Zbl | Zbl

[12] E. G. Emel'yanov, “Problems of extremal decomposition”, J. Soviet Math., 43:4 (1988), 2558–2566 | DOI | MR | Zbl | Zbl

[13] A. Yu. Solynin, “Solution of a Poĺya-Szegő isoperimetric problem”, J. Soviet Math., 53:3 (1991), 320–322 | DOI | MR | Zbl | Zbl

[14] A. Yu. Solynin, “The symmetrization method and the transfinite diameter”, Siberian Math. J., 27:2 (1986), 174–180 | MR | Zbl

[15] E. G. Emel'yanov, “A connection between two extremal partition problems”, J. Soviet Math., 52:3 (1990), 3063–3068 | DOI | MR | Zbl | Zbl

[16] G. V. Kuz'mina, “Methods of geometric function theory. II”, St. Petersburg Math. J., 9:5 (1998), 889–930 | MR | Zbl

[17] J. A. Jenkins, “The method of the extremal metric”, Handbook of complex analysis: geometric function theory. Vol. 1, North-Holland, Amsterdam, 2002, 393–456 | MR | Zbl

[18] A. Yu. Solynin, “Modules and extremal metric problems”, St. Petersburg Math. J., 11:1 (1999), 1–65 | MR | Zbl

[19] A. Vasil'ev, Moduli of families of curves for conformal and quasiconformal mappings, Lecture Notes in Math., 1788, Springer-Verlag, Berlin, 2002 | DOI | MR | Zbl

[20] V. N. Dubinin, “Asymptotics of the module of a degenerating condenser and some of their applications”, J. Math. Sci. (N. Y.), 95:3 (1999), 2209–2220 | DOI | MR | Zbl

[21] D. Karp, E. Prilepkina, “Reduced modulus with free boundary and its applications”, Ann. Acad. Sci. Fenn. Math., 34:2 (2009), 353–378

[22] P. Henrici, Applied and computational complex analysis, vol. 3, Pure Appl. Math. (N. Y.), Wiley, New York, 1986 | MR | Zbl

[23] W. K. Hayman, Multivalent functions, Cambridge Tracts in Math., 110, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl

[24] E. G. Emel'yanov, “On quadratic differentials on multiply connected domains that are perfect squares. II”, J. Math. Sci. (N. Y.), 150:3 (2008), 2027–2033 | DOI

[25] P. L. Duren, M. M. Schiffer, “Conformal mappings onto nonoverlapping regions”, Complex analysis, Birkhäuser, Basel, 1988, 27–39 | MR | Zbl

[26] V. N. Dubinin, “O proizvedenii vnutrennikh radiusov “chastichno nenalegayuschikh” oblastei”, Voprosy metricheskoi teorii otobrazhenii i ee primenenie, Naukova dumka, Kiev, 1978, 24–31 | MR

[27] A. K. Bakhtin, “Piecewise separating transformation and extremal problems with free poles”, Dokl. Math., 72:3 (2005), 854–856 | MR | Zbl

[28] V. N. Dubinin, D. B. Karp, “Generalized condensers and distortion theorems for conformal mappings of planar domains”, The interaction of analysis and geometry, Contemp. Math., 424, Amer. Math. Soc., Providence, RI, 2007, 33–51 | MR | Zbl

[29] V. N. Dubinin, Nekotorye primeneniya lineino-usrednyayuschego preobrazovaniya v teoremakh pokrytiya, Izd-vo Kubanskogo gos. un-ta, Krasnodar, 1977, dep. v VINITI 770-77