@article{SM_2009_200_10_a0,
author = {E. I. Galakhov},
title = {Elliptic and parabolic inequalities with point singularities on the boundary},
journal = {Sbornik. Mathematics},
pages = {1417--1437},
year = {2009},
volume = {200},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2009_200_10_a0/}
}
E. I. Galakhov. Elliptic and parabolic inequalities with point singularities on the boundary. Sbornik. Mathematics, Tome 200 (2009) no. 10, pp. 1417-1437. http://geodesic.mathdoc.fr/item/SM_2009_200_10_a0/
[1] I. T. Kiguradze, T. A. Chanturia, Asymptotic properties of solutions of nonautonomous ordinary differential equations, Math. Appl. (Soviet Ser.), 89, Kluwer, Dordrecht, 1993 | MR | Zbl | Zbl
[2] J. Hay, “Necessary conditions for the existence of local solutions to higher-order singular nonlinear ordinary differential equations and inequalities”, Dokl. Math., 67:1 (2003), 66–69 | MR | Zbl
[3] J. Hay, “On necessary conditions for the existence of local solutions to singular nonlinear ordinary differential equations and inequalities”, Math. Notes, 72:5–6 (2002), 847–857 | DOI | MR | Zbl
[4] H. Breźis, X. Cabré, “Some simple nonlinear PDE's without solutions”, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 1:2 (1998), 223–262 | MR | Zbl
[5] A. V. Demyanov, A. I. Nazarov, “On solvability of the Dirichlet problem to the semilinear Schrödinger equation with singular potential”, J. Math. Sci. (N. Y.), 143:2 (2007), 2857–2868 | DOI | MR | Zbl
[6] I. Kombe, “Doubly nonlinear parabolic equations with singular lower order term”, Nonlinear Anal., 56:2 (2004), 185–199 | DOI | MR | Zbl
[7] E. Mitidieri, S. I. Pokhozhaev, “The absence of global positive solutions of quasilinear elliptic inequalities”, Dokl. Math., 57:2 (1998), 250–253 | MR | Zbl
[8] E. Mitidieri, S. I. Pokhozhaev, “Nonexistence of positive solutions for a system of quasilinear elliptic equations and inequalities in $\mathbb{R}^N$”, Dokl. Math., 59:3 (1999), 351–355 | MR | Zbl
[9] E. Mitidieri, S. I. Pokhozhaev, “Nonexistence of positive solutions for quasilinear elliptic problems in $\mathbb{R}^N$”, Proc. Steklov Inst. Math., 227:4 (1999), 186–216 | MR | Zbl
[10] E. Mitidieri, S. I. Pokhozhaev, “A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities”, Proc. Steklov Inst. Math., 234:3 (2001), 1–362 | MR | Zbl | Zbl
[11] M.-F. Bidaut-Véron, S. Pohozaev, “Nonexistence results and estimates for some nonlinear elliptic problems”, J. Anal. Math., 84:1 (2001), 1–49 | DOI | MR | Zbl
[12] E. I. Galakhov, “On differential inequalities with point singularities on the boundary”, Proc. Steklov Inst. Math., 260:1 (2008), 112–122 | DOI | MR
[13] J. Serrin, “Local behavior of solutions of quasi-linear equations”, Acta Math., 111:1 (1964), 247–302 | DOI | MR | Zbl
[14] J. L. Vázquez, “A strong maximum principle for some quasilinear elliptic equations”, Appl. Math. Optim., 12:1 (1984), 191–202 | DOI | MR | Zbl